Visualizing demographic trajectories with self-organizing maps
In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend...
Gespeichert in:
Veröffentlicht in: | GeoInformatica 2005-06, Vol.9 (2), p.159-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 2 |
container_start_page | 159 |
container_title | GeoInformatica |
container_volume | 9 |
creator | SKUPIN, André HAGELMAN, Ron |
description | In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring between different time periods. This paper proposes to add another perspective to the visualization of temporal change, by linking multi-temporal observations to a geometric configuration that is not based on geographic space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at providing a cognitively plausible representation of changes occurring inside census areas by representing their attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional configuration can be represented with standard GIS data structures. Then, individual census observations are mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic variables. Various transformations and visual results are presented and discussed in the paper, from the visualization of individual component planes and trajectory clusters to the mapping of different attributes onto temporal trajectories. |
doi_str_mv | 10.1007/s10707-005-6670-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831181651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777993554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-d2eb5e8e4514e39d457d37b2d1ae457f675a2e0a94465c7547a04440f03fdc8d3</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAiCo6jD-CuCKKbaE5zOe1GkMEbDLhRtyGTpjMZehmTFtGnN0MHBBe6SgjffyDnT5JToFdAKV4HoEiRUCqIlEhJtpdMQCAjKDO-H-8s50QCisPkKIQ1jTAGJsnNmwuDrt2Xa5dpaZtu6fVm5Uzae722pu-8syH9cP0qDbauSOeXuh11ozfhODmodB3sye6cJq_3dy-zRzJ_fnia3c6JYUXRkzKzC2FzywVwy4qSCywZLrISdHzDSqLQmaW64FwKg4KjppxzWlFWlSYv2TS5GOdufPc-2NCrxgVj61q3thuCyhlADlLAvxI5o4gAIsrLPyUgYlEwIXikZ7_ouht8G3-sUOSSQ5ZlEcGIjO9C8LZSG-8a7T8VULUtSY0lqbh7tS1JbTPnu8E6GF1XXrfGhZ-gzCkvOGPfX4SQBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758641222</pqid></control><display><type>article</type><title>Visualizing demographic trajectories with self-organizing maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>SKUPIN, André ; HAGELMAN, Ron</creator><creatorcontrib>SKUPIN, André ; HAGELMAN, Ron</creatorcontrib><description>In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring between different time periods. This paper proposes to add another perspective to the visualization of temporal change, by linking multi-temporal observations to a geometric configuration that is not based on geographic space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at providing a cognitively plausible representation of changes occurring inside census areas by representing their attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional configuration can be represented with standard GIS data structures. Then, individual census observations are mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic variables. Various transformations and visual results are presented and discussed in the paper, from the visualization of individual component planes and trajectory clusters to the mapping of different attributes onto temporal trajectories.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-005-6670-2</identifier><identifier>CODEN: GEOIFP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Areal geology. Maps ; Census ; Data structures ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geologic maps, cartography ; Neural networks ; Representations ; Socioeconomics ; Studies ; Temporal logic ; Trajectories ; Two dimensional ; Visualization</subject><ispartof>GeoInformatica, 2005-06, Vol.9 (2), p.159-179</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-d2eb5e8e4514e39d457d37b2d1ae457f675a2e0a94465c7547a04440f03fdc8d3</citedby><cites>FETCH-LOGICAL-c399t-d2eb5e8e4514e39d457d37b2d1ae457f675a2e0a94465c7547a04440f03fdc8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16804943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SKUPIN, André</creatorcontrib><creatorcontrib>HAGELMAN, Ron</creatorcontrib><title>Visualizing demographic trajectories with self-organizing maps</title><title>GeoInformatica</title><description>In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring between different time periods. This paper proposes to add another perspective to the visualization of temporal change, by linking multi-temporal observations to a geometric configuration that is not based on geographic space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at providing a cognitively plausible representation of changes occurring inside census areas by representing their attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional configuration can be represented with standard GIS data structures. Then, individual census observations are mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic variables. Various transformations and visual results are presented and discussed in the paper, from the visualization of individual component planes and trajectory clusters to the mapping of different attributes onto temporal trajectories.</description><subject>Areal geology. Maps</subject><subject>Census</subject><subject>Data structures</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geologic maps, cartography</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Socioeconomics</subject><subject>Studies</subject><subject>Temporal logic</subject><subject>Trajectories</subject><subject>Two dimensional</subject><subject>Visualization</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0ctKxDAUBuAiCo6jD-CuCKKbaE5zOe1GkMEbDLhRtyGTpjMZehmTFtGnN0MHBBe6SgjffyDnT5JToFdAKV4HoEiRUCqIlEhJtpdMQCAjKDO-H-8s50QCisPkKIQ1jTAGJsnNmwuDrt2Xa5dpaZtu6fVm5Uzae722pu-8syH9cP0qDbauSOeXuh11ozfhODmodB3sye6cJq_3dy-zRzJ_fnia3c6JYUXRkzKzC2FzywVwy4qSCywZLrISdHzDSqLQmaW64FwKg4KjppxzWlFWlSYv2TS5GOdufPc-2NCrxgVj61q3thuCyhlADlLAvxI5o4gAIsrLPyUgYlEwIXikZ7_ouht8G3-sUOSSQ5ZlEcGIjO9C8LZSG-8a7T8VULUtSY0lqbh7tS1JbTPnu8E6GF1XXrfGhZ-gzCkvOGPfX4SQBg</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>SKUPIN, André</creator><creator>HAGELMAN, Ron</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20050601</creationdate><title>Visualizing demographic trajectories with self-organizing maps</title><author>SKUPIN, André ; HAGELMAN, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-d2eb5e8e4514e39d457d37b2d1ae457f675a2e0a94465c7547a04440f03fdc8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Areal geology. Maps</topic><topic>Census</topic><topic>Data structures</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geologic maps, cartography</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Socioeconomics</topic><topic>Studies</topic><topic>Temporal logic</topic><topic>Trajectories</topic><topic>Two dimensional</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SKUPIN, André</creatorcontrib><creatorcontrib>HAGELMAN, Ron</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SKUPIN, André</au><au>HAGELMAN, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing demographic trajectories with self-organizing maps</atitle><jtitle>GeoInformatica</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>9</volume><issue>2</issue><spage>159</spage><epage>179</epage><pages>159-179</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><coden>GEOIFP</coden><abstract>In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring between different time periods. This paper proposes to add another perspective to the visualization of temporal change, by linking multi-temporal observations to a geometric configuration that is not based on geographic space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at providing a cognitively plausible representation of changes occurring inside census areas by representing their attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional configuration can be represented with standard GIS data structures. Then, individual census observations are mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic variables. Various transformations and visual results are presented and discussed in the paper, from the visualization of individual component planes and trajectory clusters to the mapping of different attributes onto temporal trajectories.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10707-005-6670-2</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-6175 |
ispartof | GeoInformatica, 2005-06, Vol.9 (2), p.159-179 |
issn | 1384-6175 1573-7624 |
language | eng |
recordid | cdi_proquest_miscellaneous_831181651 |
source | SpringerLink Journals - AutoHoldings |
subjects | Areal geology. Maps Census Data structures Earth sciences Earth, ocean, space Exact sciences and technology Geologic maps, cartography Neural networks Representations Socioeconomics Studies Temporal logic Trajectories Two dimensional Visualization |
title | Visualizing demographic trajectories with self-organizing maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20demographic%20trajectories%20with%20self-organizing%20maps&rft.jtitle=GeoInformatica&rft.au=SKUPIN,%20Andr%C3%A9&rft.date=2005-06-01&rft.volume=9&rft.issue=2&rft.spage=159&rft.epage=179&rft.pages=159-179&rft.issn=1384-6175&rft.eissn=1573-7624&rft.coden=GEOIFP&rft_id=info:doi/10.1007/s10707-005-6670-2&rft_dat=%3Cproquest_cross%3E1777993554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758641222&rft_id=info:pmid/&rfr_iscdi=true |