Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways
Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas int...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2005-03, Vol.33 (3), p.365-375 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 3 |
container_start_page | 365 |
container_title | Annals of biomedical engineering |
container_volume | 33 |
creator | Lindsley, William G Collicott, Steven H Franz, Gunter N Stolarik, Brian McKinney, Walter Frazer, David G |
description | Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas interface with the airway wall is 0 degrees, and thus that the airway fluid forms an axisymmetric surface. However, some investigators have suggested that liquid in the airways is discontinuous and that contact angles can be as high as 67 degrees. In this study we consider the characteristics of constant curvature surfaces that could form a stable liquid-gas interface in a cylindrical airway. Our analysis suggests that, for small liquid volumes, asymmetric droplets are more likely to form than axisymmetric toroids. In addition, if the fluid contact angle is greater than 13 degrees, asymmetric droplets can sustain larger liquid volumes than axisymmetric toroids before collapsing to form menisci. These results suggest that (1) fluid formations other than axisymmetric toroids could occur in the airways; and (2) the analysis of the behavior of fluids and the development of liquid menisci within the lungs should include the potential role of asymmetric droplets. |
doi_str_mv | 10.1007/s10439-005-1739-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831180208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155616991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5d33922e9f16629ff5c65e7fa1454e7dba277de216367b77f0afa8a462c2b7bf3</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4Motj4-gBdZPOhpNY9NJjmW4gsEL3rwFLLZRLbso0121X57U1ooePA0f4bfDMz8ELog-JZgDHeR4IKpHGOeE0iBH6Ap4cByJaQ4RFOMFc6FEsUEncS4wJgQyfgxmhAuhQQKU_Qxi-u2dUOobWa6KjM_9b5h-y4OphsyO4YvM4zBZU29Gusq_zQxq7vBBW-s28RsOTZt35mwzkwdvs06nqEjb5roznf1FL0_3L_Nn_KX18fn-ewlt4zLIecVY4pSpzwRgirvuRXcgTek4IWDqjQUoHKUCCagBPDYeCNNIailJZSenaKb7d5l6Feji4Nu62hd05jO9WPUkqWrMcUykdf_kgJAKo5VAq_-gIt-DF26QgMXwIvEJYhsIRv6GIPzehnqNj1AE6w3evRWj0569EaP5mnmcrd4LFtX7Sd2Ptgvwn2MEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756754789</pqid></control><display><type>article</type><title>Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lindsley, William G ; Collicott, Steven H ; Franz, Gunter N ; Stolarik, Brian ; McKinney, Walter ; Frazer, David G</creator><creatorcontrib>Lindsley, William G ; Collicott, Steven H ; Franz, Gunter N ; Stolarik, Brian ; McKinney, Walter ; Frazer, David G</creatorcontrib><description>Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas interface with the airway wall is 0 degrees, and thus that the airway fluid forms an axisymmetric surface. However, some investigators have suggested that liquid in the airways is discontinuous and that contact angles can be as high as 67 degrees. In this study we consider the characteristics of constant curvature surfaces that could form a stable liquid-gas interface in a cylindrical airway. Our analysis suggests that, for small liquid volumes, asymmetric droplets are more likely to form than axisymmetric toroids. In addition, if the fluid contact angle is greater than 13 degrees, asymmetric droplets can sustain larger liquid volumes than axisymmetric toroids before collapsing to form menisci. These results suggest that (1) fluid formations other than axisymmetric toroids could occur in the airways; and (2) the analysis of the behavior of fluids and the development of liquid menisci within the lungs should include the potential role of asymmetric droplets.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-005-1739-5</identifier><identifier>PMID: 15868727</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Airway Obstruction - physiopathology ; Animals ; Anisotropy ; Computer Simulation ; Humans ; Lung - physiopathology ; Models, Biological ; Pulmonary Gas Exchange - physiology ; Pulmonary Surfactants - metabolism ; Respiratory Mucosa - physiopathology ; Solutions ; Surface Properties ; Trachea - physiopathology</subject><ispartof>Annals of biomedical engineering, 2005-03, Vol.33 (3), p.365-375</ispartof><rights>Biomedical Engineering Society 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5d33922e9f16629ff5c65e7fa1454e7dba277de216367b77f0afa8a462c2b7bf3</citedby><cites>FETCH-LOGICAL-c358t-5d33922e9f16629ff5c65e7fa1454e7dba277de216367b77f0afa8a462c2b7bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15868727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindsley, William G</creatorcontrib><creatorcontrib>Collicott, Steven H</creatorcontrib><creatorcontrib>Franz, Gunter N</creatorcontrib><creatorcontrib>Stolarik, Brian</creatorcontrib><creatorcontrib>McKinney, Walter</creatorcontrib><creatorcontrib>Frazer, David G</creatorcontrib><title>Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas interface with the airway wall is 0 degrees, and thus that the airway fluid forms an axisymmetric surface. However, some investigators have suggested that liquid in the airways is discontinuous and that contact angles can be as high as 67 degrees. In this study we consider the characteristics of constant curvature surfaces that could form a stable liquid-gas interface in a cylindrical airway. Our analysis suggests that, for small liquid volumes, asymmetric droplets are more likely to form than axisymmetric toroids. In addition, if the fluid contact angle is greater than 13 degrees, asymmetric droplets can sustain larger liquid volumes than axisymmetric toroids before collapsing to form menisci. These results suggest that (1) fluid formations other than axisymmetric toroids could occur in the airways; and (2) the analysis of the behavior of fluids and the development of liquid menisci within the lungs should include the potential role of asymmetric droplets.</description><subject>Airway Obstruction - physiopathology</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Lung - physiopathology</subject><subject>Models, Biological</subject><subject>Pulmonary Gas Exchange - physiology</subject><subject>Pulmonary Surfactants - metabolism</subject><subject>Respiratory Mucosa - physiopathology</subject><subject>Solutions</subject><subject>Surface Properties</subject><subject>Trachea - physiopathology</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEQx4Motj4-gBdZPOhpNY9NJjmW4gsEL3rwFLLZRLbso0121X57U1ooePA0f4bfDMz8ELog-JZgDHeR4IKpHGOeE0iBH6Ap4cByJaQ4RFOMFc6FEsUEncS4wJgQyfgxmhAuhQQKU_Qxi-u2dUOobWa6KjM_9b5h-y4OphsyO4YvM4zBZU29Gusq_zQxq7vBBW-s28RsOTZt35mwzkwdvs06nqEjb5roznf1FL0_3L_Nn_KX18fn-ewlt4zLIecVY4pSpzwRgirvuRXcgTek4IWDqjQUoHKUCCagBPDYeCNNIailJZSenaKb7d5l6Feji4Nu62hd05jO9WPUkqWrMcUykdf_kgJAKo5VAq_-gIt-DF26QgMXwIvEJYhsIRv6GIPzehnqNj1AE6w3evRWj0569EaP5mnmcrd4LFtX7Sd2Ptgvwn2MEw</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Lindsley, William G</creator><creator>Collicott, Steven H</creator><creator>Franz, Gunter N</creator><creator>Stolarik, Brian</creator><creator>McKinney, Walter</creator><creator>Frazer, David G</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways</title><author>Lindsley, William G ; Collicott, Steven H ; Franz, Gunter N ; Stolarik, Brian ; McKinney, Walter ; Frazer, David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5d33922e9f16629ff5c65e7fa1454e7dba277de216367b77f0afa8a462c2b7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Airway Obstruction - physiopathology</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Lung - physiopathology</topic><topic>Models, Biological</topic><topic>Pulmonary Gas Exchange - physiology</topic><topic>Pulmonary Surfactants - metabolism</topic><topic>Respiratory Mucosa - physiopathology</topic><topic>Solutions</topic><topic>Surface Properties</topic><topic>Trachea - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsley, William G</creatorcontrib><creatorcontrib>Collicott, Steven H</creatorcontrib><creatorcontrib>Franz, Gunter N</creatorcontrib><creatorcontrib>Stolarik, Brian</creatorcontrib><creatorcontrib>McKinney, Walter</creatorcontrib><creatorcontrib>Frazer, David G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsley, William G</au><au>Collicott, Steven H</au><au>Franz, Gunter N</au><au>Stolarik, Brian</au><au>McKinney, Walter</au><au>Frazer, David G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>33</volume><issue>3</issue><spage>365</spage><epage>375</epage><pages>365-375</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas interface with the airway wall is 0 degrees, and thus that the airway fluid forms an axisymmetric surface. However, some investigators have suggested that liquid in the airways is discontinuous and that contact angles can be as high as 67 degrees. In this study we consider the characteristics of constant curvature surfaces that could form a stable liquid-gas interface in a cylindrical airway. Our analysis suggests that, for small liquid volumes, asymmetric droplets are more likely to form than axisymmetric toroids. In addition, if the fluid contact angle is greater than 13 degrees, asymmetric droplets can sustain larger liquid volumes than axisymmetric toroids before collapsing to form menisci. These results suggest that (1) fluid formations other than axisymmetric toroids could occur in the airways; and (2) the analysis of the behavior of fluids and the development of liquid menisci within the lungs should include the potential role of asymmetric droplets.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15868727</pmid><doi>10.1007/s10439-005-1739-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2005-03, Vol.33 (3), p.365-375 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_831180208 |
source | MEDLINE; SpringerNature Journals |
subjects | Airway Obstruction - physiopathology Animals Anisotropy Computer Simulation Humans Lung - physiopathology Models, Biological Pulmonary Gas Exchange - physiology Pulmonary Surfactants - metabolism Respiratory Mucosa - physiopathology Solutions Surface Properties Trachea - physiopathology |
title | Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20and%20axisymmetric%20constant%20curvature%20liquid-gas%20interfaces%20in%20pulmonary%20airways&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Lindsley,%20William%20G&rft.date=2005-03-01&rft.volume=33&rft.issue=3&rft.spage=365&rft.epage=375&rft.pages=365-375&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-005-1739-5&rft_dat=%3Cproquest_cross%3E2155616991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756754789&rft_id=info:pmid/15868727&rfr_iscdi=true |