Mechanics of leukocyte deformation and adhesion to endothelium in shear flow

The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling reveal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 1999-05, Vol.27 (3), p.298-312
Hauptverfasser: CHENG DONG, JIAN CAO, STRUBLE, E. J, LIPOWSKY, H. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 3
container_start_page 298
container_title Annals of biomedical engineering
container_volume 27
creator CHENG DONG
JIAN CAO
STRUBLE, E. J
LIPOWSKY, H. H
description The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling revealed that for a given wall shear stress, the contact area increases with time as new bonds are formed at the leading edge, and then decreases with time as the trailing edge of the WBC membrane peels away from the EC. A two-dimensional model (2D) was developed consisting of an elastic ring adhered to a surface under fluid stresses. This ring represents an actin-rich WBC cortical layer and contains an incompressible fluid as the cell interior. All molecular bonds are modeled as elastic springs distributed in the WBC-EC contact region. Variations of the proportionality between wall shear stress (tau(w)) in the vicinity of the WBC and the resulting drag force (F(s)), i.e., F(s)/tau(w), reveal its decrease with WBC deformation and increasing vessel channel height (2D). The computations also find that the peeling zone between adherent WBC and EC may account for less than 5% of the total contact interface. Computational studies describe the WBC-EC adhesion and the extent of WBC deformation during the adhesive process.
doi_str_mv 10.1114/1.143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831179809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69826663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-69c4d2f71a1590125fd36d1a13502e063ac3d7cf7cbc2944716029a37508c5903</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOAgiq21f0GC-DhtzWx2k81Rii-oeNHzkuZBt-4mmuwi_femtKB48DQMfDPMA6EpkBkAFDcwg4IeoDGUnGaCVewQjQkRJGOCFSN0EuOaEICKlsdoBITygud0jBbPRq2ka1TE3uLWDO9ebXqDtbE-dLJvvMPSaSz1ysRt0ntsnPb9yrTN0OHG4bgyMmDb-q9TdGRlG810Hyfo7f7udf6YLV4enua3i0wVOe_TRKrQueUgoRQE8tJqynTKaElyQxiVimquLFdLlYui4MBILiTlJalUqqATdL3r-xH852BiX3dNVKZtpTN-iHVFAbioiEjy6l_JRJUzxmiC53_g2g_BpS1qXjLOKAOW0OUOqeBjDMbWH6HpZNjUQOrtF2qo0xeSO9s3G5ad0b_U7uwJXOyBjEq2NkinmvjjKlqlbek3UUCLYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756763616</pqid></control><display><type>article</type><title>Mechanics of leukocyte deformation and adhesion to endothelium in shear flow</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>CHENG DONG ; JIAN CAO ; STRUBLE, E. J ; LIPOWSKY, H. H</creator><creatorcontrib>CHENG DONG ; JIAN CAO ; STRUBLE, E. J ; LIPOWSKY, H. H</creatorcontrib><description>The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling revealed that for a given wall shear stress, the contact area increases with time as new bonds are formed at the leading edge, and then decreases with time as the trailing edge of the WBC membrane peels away from the EC. A two-dimensional model (2D) was developed consisting of an elastic ring adhered to a surface under fluid stresses. This ring represents an actin-rich WBC cortical layer and contains an incompressible fluid as the cell interior. All molecular bonds are modeled as elastic springs distributed in the WBC-EC contact region. Variations of the proportionality between wall shear stress (tau(w)) in the vicinity of the WBC and the resulting drag force (F(s)), i.e., F(s)/tau(w), reveal its decrease with WBC deformation and increasing vessel channel height (2D). The computations also find that the peeling zone between adherent WBC and EC may account for less than 5% of the total contact interface. Computational studies describe the WBC-EC adhesion and the extent of WBC deformation during the adhesive process.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1114/1.143</identifier><identifier>PMID: 10374723</identifier><identifier>CODEN: ABMECF</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Adhesion ; Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Biomedical Engineering ; Blood Flow Velocity ; Cell Adhesion - physiology ; Cell Membrane - physiology ; Cell Size - physiology ; Computerized, statistical medical data processing and models in biomedicine ; Deformation ; Elasticity ; Endothelium, Vascular - cytology ; Endothelium, Vascular - physiology ; Fundamental and applied biological sciences. Psychology ; Leukocytes - cytology ; Leukocytes - physiology ; Mechanics ; Medical sciences ; Microscopy, Video ; Models and simulation ; Models, Biological ; Rats ; Shear stress ; Vertebrates: blood, hematopoietic organs, reticuloendothelial system</subject><ispartof>Annals of biomedical engineering, 1999-05, Vol.27 (3), p.298-312</ispartof><rights>1999 INIST-CNRS</rights><rights>Biomedical Engineering Society 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-69c4d2f71a1590125fd36d1a13502e063ac3d7cf7cbc2944716029a37508c5903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1838375$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10374723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHENG DONG</creatorcontrib><creatorcontrib>JIAN CAO</creatorcontrib><creatorcontrib>STRUBLE, E. J</creatorcontrib><creatorcontrib>LIPOWSKY, H. H</creatorcontrib><title>Mechanics of leukocyte deformation and adhesion to endothelium in shear flow</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling revealed that for a given wall shear stress, the contact area increases with time as new bonds are formed at the leading edge, and then decreases with time as the trailing edge of the WBC membrane peels away from the EC. A two-dimensional model (2D) was developed consisting of an elastic ring adhered to a surface under fluid stresses. This ring represents an actin-rich WBC cortical layer and contains an incompressible fluid as the cell interior. All molecular bonds are modeled as elastic springs distributed in the WBC-EC contact region. Variations of the proportionality between wall shear stress (tau(w)) in the vicinity of the WBC and the resulting drag force (F(s)), i.e., F(s)/tau(w), reveal its decrease with WBC deformation and increasing vessel channel height (2D). The computations also find that the peeling zone between adherent WBC and EC may account for less than 5% of the total contact interface. Computational studies describe the WBC-EC adhesion and the extent of WBC deformation during the adhesive process.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering</subject><subject>Blood Flow Velocity</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Membrane - physiology</subject><subject>Cell Size - physiology</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Leukocytes - cytology</subject><subject>Leukocytes - physiology</subject><subject>Mechanics</subject><subject>Medical sciences</subject><subject>Microscopy, Video</subject><subject>Models and simulation</subject><subject>Models, Biological</subject><subject>Rats</subject><subject>Shear stress</subject><subject>Vertebrates: blood, hematopoietic organs, reticuloendothelial system</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90UtLAzEQAOAgiq21f0GC-DhtzWx2k81Rii-oeNHzkuZBt-4mmuwi_femtKB48DQMfDPMA6EpkBkAFDcwg4IeoDGUnGaCVewQjQkRJGOCFSN0EuOaEICKlsdoBITygud0jBbPRq2ka1TE3uLWDO9ebXqDtbE-dLJvvMPSaSz1ysRt0ntsnPb9yrTN0OHG4bgyMmDb-q9TdGRlG810Hyfo7f7udf6YLV4enua3i0wVOe_TRKrQueUgoRQE8tJqynTKaElyQxiVimquLFdLlYui4MBILiTlJalUqqATdL3r-xH852BiX3dNVKZtpTN-iHVFAbioiEjy6l_JRJUzxmiC53_g2g_BpS1qXjLOKAOW0OUOqeBjDMbWH6HpZNjUQOrtF2qo0xeSO9s3G5ad0b_U7uwJXOyBjEq2NkinmvjjKlqlbek3UUCLYw</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>CHENG DONG</creator><creator>JIAN CAO</creator><creator>STRUBLE, E. J</creator><creator>LIPOWSKY, H. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>19990501</creationdate><title>Mechanics of leukocyte deformation and adhesion to endothelium in shear flow</title><author>CHENG DONG ; JIAN CAO ; STRUBLE, E. J ; LIPOWSKY, H. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-69c4d2f71a1590125fd36d1a13502e063ac3d7cf7cbc2944716029a37508c5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering</topic><topic>Blood Flow Velocity</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Membrane - physiology</topic><topic>Cell Size - physiology</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Leukocytes - cytology</topic><topic>Leukocytes - physiology</topic><topic>Mechanics</topic><topic>Medical sciences</topic><topic>Microscopy, Video</topic><topic>Models and simulation</topic><topic>Models, Biological</topic><topic>Rats</topic><topic>Shear stress</topic><topic>Vertebrates: blood, hematopoietic organs, reticuloendothelial system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHENG DONG</creatorcontrib><creatorcontrib>JIAN CAO</creatorcontrib><creatorcontrib>STRUBLE, E. J</creatorcontrib><creatorcontrib>LIPOWSKY, H. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHENG DONG</au><au>JIAN CAO</au><au>STRUBLE, E. J</au><au>LIPOWSKY, H. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of leukocyte deformation and adhesion to endothelium in shear flow</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>27</volume><issue>3</issue><spage>298</spage><epage>312</epage><pages>298-312</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><coden>ABMECF</coden><abstract>The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling revealed that for a given wall shear stress, the contact area increases with time as new bonds are formed at the leading edge, and then decreases with time as the trailing edge of the WBC membrane peels away from the EC. A two-dimensional model (2D) was developed consisting of an elastic ring adhered to a surface under fluid stresses. This ring represents an actin-rich WBC cortical layer and contains an incompressible fluid as the cell interior. All molecular bonds are modeled as elastic springs distributed in the WBC-EC contact region. Variations of the proportionality between wall shear stress (tau(w)) in the vicinity of the WBC and the resulting drag force (F(s)), i.e., F(s)/tau(w), reveal its decrease with WBC deformation and increasing vessel channel height (2D). The computations also find that the peeling zone between adherent WBC and EC may account for less than 5% of the total contact interface. Computational studies describe the WBC-EC adhesion and the extent of WBC deformation during the adhesive process.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>10374723</pmid><doi>10.1114/1.143</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 1999-05, Vol.27 (3), p.298-312
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_831179809
source MEDLINE; SpringerNature Journals
subjects Adhesion
Animals
Biological and medical sciences
Biomechanical Phenomena
Biomedical Engineering
Blood Flow Velocity
Cell Adhesion - physiology
Cell Membrane - physiology
Cell Size - physiology
Computerized, statistical medical data processing and models in biomedicine
Deformation
Elasticity
Endothelium, Vascular - cytology
Endothelium, Vascular - physiology
Fundamental and applied biological sciences. Psychology
Leukocytes - cytology
Leukocytes - physiology
Mechanics
Medical sciences
Microscopy, Video
Models and simulation
Models, Biological
Rats
Shear stress
Vertebrates: blood, hematopoietic organs, reticuloendothelial system
title Mechanics of leukocyte deformation and adhesion to endothelium in shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20leukocyte%20deformation%20and%20adhesion%20to%20endothelium%20in%20shear%20flow&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=CHENG%20DONG&rft.date=1999-05-01&rft.volume=27&rft.issue=3&rft.spage=298&rft.epage=312&rft.pages=298-312&rft.issn=0090-6964&rft.eissn=1573-9686&rft.coden=ABMECF&rft_id=info:doi/10.1114/1.143&rft_dat=%3Cproquest_cross%3E69826663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756763616&rft_id=info:pmid/10374723&rfr_iscdi=true