Optimal Modal Beamforming for Spherical Microphone Arrays

An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-02, Vol.19 (2), p.361-371
Hauptverfasser: Shefeng Yan, Haohai Sun, Svensson, U P, Xiaochuan Ma, Hovem, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 2
container_start_page 361
container_title IEEE transactions on audio, speech, and language processing
container_volume 19
creator Shefeng Yan
Haohai Sun
Svensson, U P
Xiaochuan Ma
Hovem, J M
description An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.
doi_str_mv 10.1109/TASL.2010.2047815
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831178428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5445044</ieee_id><sourcerecordid>2724089791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgBdRsFZ_gHhZEPG0NZPXZo-1-IJKD63nELMTu2VfJu2h_94sLT14ySQz3wyZL0lugUwASPG0mi7nE0rikxKeKxBnyQiEUFleUH5-uoO8TK5C2BDCmeQwSopFv60aU6efXRnPZzSN63xTtT9pjOmyX6Ov7FCvrO_6dddiOvXe7MN1cuFMHfDmGMfJ1-vLavaezRdvH7PpPLNMiG1mSiIJk2hLStA5i4SDgyK3NFdSMmcdEeQbgYPkpWRGxSyWMmc5ckaoYOPk8TC3993vDsNWN1WwWNemxW4XtGIAueJURfL-H7npdr6Nn9NAGAEuC1pECg5U3CcEj073Phrw-wjpwaUeXOrBpT66jD0Px8kmRBnOm9ZW4dRImaJCUYjc3YGrEPFUFpwLwjn7A9LKeqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030146929</pqid></control><display><type>article</type><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</creator><creatorcontrib>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</creatorcontrib><description>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2010.2047815</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Array processing ; Array signal processing ; Arrays ; Constraints ; Design engineering ; Detection, estimation, filtering, equalization, prediction ; directivity index (DI) ; Distortion measurement ; Exact sciences and technology ; Gain measurement ; Harmonic distortion ; Information theory ; Information, signal and communications theory ; Microphone arrays ; Microphones ; Miscellaneous ; multiply constrained optimization ; Optimization ; Performance gain ; Phase distortion ; Phased arrays ; Robustness ; Sampling ; Sampling methods ; Sampling, quantization ; sidelobe control ; Signal and communications theory ; Signal processing ; Signal, noise ; Spherical harmonics ; Studies ; Synthesis ; Telecommunications and information theory ; white noise gain (WNG)</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-02, Vol.19 (2), p.361-371</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</citedby><cites>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5445044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5445044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825821$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Svensson, U P</creatorcontrib><creatorcontrib>Xiaochuan Ma</creatorcontrib><creatorcontrib>Hovem, J M</creatorcontrib><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array processing</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Constraints</subject><subject>Design engineering</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>directivity index (DI)</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Gain measurement</subject><subject>Harmonic distortion</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Microphone arrays</subject><subject>Microphones</subject><subject>Miscellaneous</subject><subject>multiply constrained optimization</subject><subject>Optimization</subject><subject>Performance gain</subject><subject>Phase distortion</subject><subject>Phased arrays</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sampling, quantization</subject><subject>sidelobe control</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spherical harmonics</subject><subject>Studies</subject><subject>Synthesis</subject><subject>Telecommunications and information theory</subject><subject>white noise gain (WNG)</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgBdRsFZ_gHhZEPG0NZPXZo-1-IJKD63nELMTu2VfJu2h_94sLT14ySQz3wyZL0lugUwASPG0mi7nE0rikxKeKxBnyQiEUFleUH5-uoO8TK5C2BDCmeQwSopFv60aU6efXRnPZzSN63xTtT9pjOmyX6Ov7FCvrO_6dddiOvXe7MN1cuFMHfDmGMfJ1-vLavaezRdvH7PpPLNMiG1mSiIJk2hLStA5i4SDgyK3NFdSMmcdEeQbgYPkpWRGxSyWMmc5ckaoYOPk8TC3993vDsNWN1WwWNemxW4XtGIAueJURfL-H7npdr6Nn9NAGAEuC1pECg5U3CcEj073Phrw-wjpwaUeXOrBpT66jD0Px8kmRBnOm9ZW4dRImaJCUYjc3YGrEPFUFpwLwjn7A9LKeqM</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Shefeng Yan</creator><creator>Haohai Sun</creator><creator>Svensson, U P</creator><creator>Xiaochuan Ma</creator><creator>Hovem, J M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><author>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array processing</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Constraints</topic><topic>Design engineering</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>directivity index (DI)</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Gain measurement</topic><topic>Harmonic distortion</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Microphone arrays</topic><topic>Microphones</topic><topic>Miscellaneous</topic><topic>multiply constrained optimization</topic><topic>Optimization</topic><topic>Performance gain</topic><topic>Phase distortion</topic><topic>Phased arrays</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sampling, quantization</topic><topic>sidelobe control</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spherical harmonics</topic><topic>Studies</topic><topic>Synthesis</topic><topic>Telecommunications and information theory</topic><topic>white noise gain (WNG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Svensson, U P</creatorcontrib><creatorcontrib>Xiaochuan Ma</creatorcontrib><creatorcontrib>Hovem, J M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shefeng Yan</au><au>Haohai Sun</au><au>Svensson, U P</au><au>Xiaochuan Ma</au><au>Hovem, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Modal Beamforming for Spherical Microphone Arrays</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>19</volume><issue>2</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2010.2047815</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2011-02, Vol.19 (2), p.361-371
issn 1558-7916
2329-9290
1558-7924
2329-9304
language eng
recordid cdi_proquest_miscellaneous_831178428
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Array processing
Array signal processing
Arrays
Constraints
Design engineering
Detection, estimation, filtering, equalization, prediction
directivity index (DI)
Distortion measurement
Exact sciences and technology
Gain measurement
Harmonic distortion
Information theory
Information, signal and communications theory
Microphone arrays
Microphones
Miscellaneous
multiply constrained optimization
Optimization
Performance gain
Phase distortion
Phased arrays
Robustness
Sampling
Sampling methods
Sampling, quantization
sidelobe control
Signal and communications theory
Signal processing
Signal, noise
Spherical harmonics
Studies
Synthesis
Telecommunications and information theory
white noise gain (WNG)
title Optimal Modal Beamforming for Spherical Microphone Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Modal%20Beamforming%20for%20Spherical%20Microphone%20Arrays&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Shefeng%20Yan&rft.date=2011-02-01&rft.volume=19&rft.issue=2&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2010.2047815&rft_dat=%3Cproquest_RIE%3E2724089791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030146929&rft_id=info:pmid/&rft_ieee_id=5445044&rfr_iscdi=true