Optimal Modal Beamforming for Spherical Microphone Arrays
An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-02, Vol.19 (2), p.361-371 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 2 |
container_start_page | 361 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 19 |
creator | Shefeng Yan Haohai Sun Svensson, U P Xiaochuan Ma Hovem, J M |
description | An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected. |
doi_str_mv | 10.1109/TASL.2010.2047815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831178428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5445044</ieee_id><sourcerecordid>2724089791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgBdRsFZ_gHhZEPG0NZPXZo-1-IJKD63nELMTu2VfJu2h_94sLT14ySQz3wyZL0lugUwASPG0mi7nE0rikxKeKxBnyQiEUFleUH5-uoO8TK5C2BDCmeQwSopFv60aU6efXRnPZzSN63xTtT9pjOmyX6Ov7FCvrO_6dddiOvXe7MN1cuFMHfDmGMfJ1-vLavaezRdvH7PpPLNMiG1mSiIJk2hLStA5i4SDgyK3NFdSMmcdEeQbgYPkpWRGxSyWMmc5ckaoYOPk8TC3993vDsNWN1WwWNemxW4XtGIAueJURfL-H7npdr6Nn9NAGAEuC1pECg5U3CcEj073Phrw-wjpwaUeXOrBpT66jD0Px8kmRBnOm9ZW4dRImaJCUYjc3YGrEPFUFpwLwjn7A9LKeqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030146929</pqid></control><display><type>article</type><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</creator><creatorcontrib>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</creatorcontrib><description>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2010.2047815</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Array processing ; Array signal processing ; Arrays ; Constraints ; Design engineering ; Detection, estimation, filtering, equalization, prediction ; directivity index (DI) ; Distortion measurement ; Exact sciences and technology ; Gain measurement ; Harmonic distortion ; Information theory ; Information, signal and communications theory ; Microphone arrays ; Microphones ; Miscellaneous ; multiply constrained optimization ; Optimization ; Performance gain ; Phase distortion ; Phased arrays ; Robustness ; Sampling ; Sampling methods ; Sampling, quantization ; sidelobe control ; Signal and communications theory ; Signal processing ; Signal, noise ; Spherical harmonics ; Studies ; Synthesis ; Telecommunications and information theory ; white noise gain (WNG)</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-02, Vol.19 (2), p.361-371</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</citedby><cites>FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5445044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5445044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825821$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Svensson, U P</creatorcontrib><creatorcontrib>Xiaochuan Ma</creatorcontrib><creatorcontrib>Hovem, J M</creatorcontrib><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array processing</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Constraints</subject><subject>Design engineering</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>directivity index (DI)</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Gain measurement</subject><subject>Harmonic distortion</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Microphone arrays</subject><subject>Microphones</subject><subject>Miscellaneous</subject><subject>multiply constrained optimization</subject><subject>Optimization</subject><subject>Performance gain</subject><subject>Phase distortion</subject><subject>Phased arrays</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sampling, quantization</subject><subject>sidelobe control</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spherical harmonics</subject><subject>Studies</subject><subject>Synthesis</subject><subject>Telecommunications and information theory</subject><subject>white noise gain (WNG)</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgBdRsFZ_gHhZEPG0NZPXZo-1-IJKD63nELMTu2VfJu2h_94sLT14ySQz3wyZL0lugUwASPG0mi7nE0rikxKeKxBnyQiEUFleUH5-uoO8TK5C2BDCmeQwSopFv60aU6efXRnPZzSN63xTtT9pjOmyX6Ov7FCvrO_6dddiOvXe7MN1cuFMHfDmGMfJ1-vLavaezRdvH7PpPLNMiG1mSiIJk2hLStA5i4SDgyK3NFdSMmcdEeQbgYPkpWRGxSyWMmc5ckaoYOPk8TC3993vDsNWN1WwWNemxW4XtGIAueJURfL-H7npdr6Nn9NAGAEuC1pECg5U3CcEj073Phrw-wjpwaUeXOrBpT66jD0Px8kmRBnOm9ZW4dRImaJCUYjc3YGrEPFUFpwLwjn7A9LKeqM</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Shefeng Yan</creator><creator>Haohai Sun</creator><creator>Svensson, U P</creator><creator>Xiaochuan Ma</creator><creator>Hovem, J M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Optimal Modal Beamforming for Spherical Microphone Arrays</title><author>Shefeng Yan ; Haohai Sun ; Svensson, U P ; Xiaochuan Ma ; Hovem, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ad06036ecd20effce041f197c278663fcf050be14164d63a8866ed6737e430253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array processing</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Constraints</topic><topic>Design engineering</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>directivity index (DI)</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Gain measurement</topic><topic>Harmonic distortion</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Microphone arrays</topic><topic>Microphones</topic><topic>Miscellaneous</topic><topic>multiply constrained optimization</topic><topic>Optimization</topic><topic>Performance gain</topic><topic>Phase distortion</topic><topic>Phased arrays</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sampling, quantization</topic><topic>sidelobe control</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spherical harmonics</topic><topic>Studies</topic><topic>Synthesis</topic><topic>Telecommunications and information theory</topic><topic>white noise gain (WNG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Svensson, U P</creatorcontrib><creatorcontrib>Xiaochuan Ma</creatorcontrib><creatorcontrib>Hovem, J M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shefeng Yan</au><au>Haohai Sun</au><au>Svensson, U P</au><au>Xiaochuan Ma</au><au>Hovem, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Modal Beamforming for Spherical Microphone Arrays</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>19</volume><issue>2</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>An approach to optimal array pattern synthesis based on spherical harmonics is presented. The array processing problem in the spherical harmonics domain is expressed with a matrix formulation. The beamformer weight vector design problem is written as a multiply constrained problem, so that the resulting beamformer can provide a suitable trade-off among multiple conflicting performance measures such as directivity index, robustness, array gain, sidelobe level, mainlobe width, and so on. The multiply constrained problem is formulated as a convex form of second-order cone programming which is computationally tractable. We show that the pure phase-mode spherical microphone array can be viewed as a minimum variance distortionless response (MVDR) beamformer in the spherical harmonics domain for the case of spherically isotropic noise. It is shown that our approach includes the delay-and-sum beamformer and a pure phase-mode beamformer as special cases, which leads to very flexible designs. Results of simulations and experimental data processing show good performance of the proposed array pattern synthesis approach. To simplify the analysis, the assumption of equidistant spatial sampling of the wavefield by microphones on a spherical surface is used and the aliasing effects due to noncontinuous spatial sampling are neglected.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2010.2047815</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2011-02, Vol.19 (2), p.361-371 |
issn | 1558-7916 2329-9290 1558-7924 2329-9304 |
language | eng |
recordid | cdi_proquest_miscellaneous_831178428 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Array processing Array signal processing Arrays Constraints Design engineering Detection, estimation, filtering, equalization, prediction directivity index (DI) Distortion measurement Exact sciences and technology Gain measurement Harmonic distortion Information theory Information, signal and communications theory Microphone arrays Microphones Miscellaneous multiply constrained optimization Optimization Performance gain Phase distortion Phased arrays Robustness Sampling Sampling methods Sampling, quantization sidelobe control Signal and communications theory Signal processing Signal, noise Spherical harmonics Studies Synthesis Telecommunications and information theory white noise gain (WNG) |
title | Optimal Modal Beamforming for Spherical Microphone Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Modal%20Beamforming%20for%20Spherical%20Microphone%20Arrays&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Shefeng%20Yan&rft.date=2011-02-01&rft.volume=19&rft.issue=2&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2010.2047815&rft_dat=%3Cproquest_RIE%3E2724089791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030146929&rft_id=info:pmid/&rft_ieee_id=5445044&rfr_iscdi=true |