Nonlinear analysis of renal autoregulation in rats using principal dynamic modes
This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and collecte...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 1999, Vol.27 (1), p.23-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Annals of biomedical engineering |
container_volume | 27 |
creator | MARMARELIS, V. Z CHON, K. H HOLSTEIN-RATHLOU, N. H MARSH, D. J |
description | This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results demonstrate that two PDMs suffice for obtaining a satisfactory nonlinear dynamic model of renal autoregulation under these conditions, for both normotensive and hypertensive rats. Furthermore, the two PDMs appear to correspond to the two main autoregulatory mechanisms: the first to the myogenic and the second to the tubuloglomerular feedback (TGF) mechanism. This allows the study of the separate contributions of the two mechanisms to the autoregulatory response dynamics, as well as the effects of the level of pressure forcing and hypertension on the two distinct autoregulatory mechanisms. It is shown that the myogenic mechanism has a larger contribution and is affected only slightly, while the TGF mechanism is affected considerably by increasing pressure forcing or hypertension (the emergence of a second resonant peak and the decreased relative contribution to the response flow signal). |
doi_str_mv | 10.1114/1.222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831175293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>831175293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6c709f654766804387fbb1e9f2283cd10166bcec03be2dd2cb540aaf3d03b18b3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMo67ruTxCC-HXpmmmapDmK-AWiHvRc0jRdIm2yJu1h_71ZdlHw4GmYmYeXmfdFaA5kAQDFNSzyPN9DU2CCZpKXfB9NCZEk45IXh-goxk9CAErKJmgiJXDBxBS9vXjXWWdUwMqpbh1txL7FwaQGq3HwwSzHTg3WO2wdDmqIeIzWLfEqWKftKmHN2qneatz7xsRjdNCqLpr5rs7Qx_3d--1j9vz68HR785xpKumQcS2IbDkrBOclKWgp2roGI9s8L6lugADntTaa0NrkTZPrmhVEqZY2aQJlTWfocqu7Cv5rNHGoehu16TrljB9jVVIAwXJJE3nxL8klY1SUkMCrf8FkGdAi3brRPP2DfvoxJM9iJRgXnIr0xgydbyEdfIzBtFXyrFdhXQGpNplVUKXMEneyExvr3jQ_1C6ktD_b7VXUqmuDSsbHXzFeUJCSfgMc2pvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756763728</pqid></control><display><type>article</type><title>Nonlinear analysis of renal autoregulation in rats using principal dynamic modes</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>MARMARELIS, V. Z ; CHON, K. H ; HOLSTEIN-RATHLOU, N. H ; MARSH, D. J</creator><creatorcontrib>MARMARELIS, V. Z ; CHON, K. H ; HOLSTEIN-RATHLOU, N. H ; MARSH, D. J</creatorcontrib><description>This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results demonstrate that two PDMs suffice for obtaining a satisfactory nonlinear dynamic model of renal autoregulation under these conditions, for both normotensive and hypertensive rats. Furthermore, the two PDMs appear to correspond to the two main autoregulatory mechanisms: the first to the myogenic and the second to the tubuloglomerular feedback (TGF) mechanism. This allows the study of the separate contributions of the two mechanisms to the autoregulatory response dynamics, as well as the effects of the level of pressure forcing and hypertension on the two distinct autoregulatory mechanisms. It is shown that the myogenic mechanism has a larger contribution and is affected only slightly, while the TGF mechanism is affected considerably by increasing pressure forcing or hypertension (the emergence of a second resonant peak and the decreased relative contribution to the response flow signal).</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1114/1.222</identifier><identifier>PMID: 9916757</identifier><identifier>CODEN: ABMECF</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Animals ; Biological and medical sciences ; Biomedical engineering ; Blood pressure ; Broadband ; Dynamic tests ; Emergence ; Endocrine kidney. Renin-angiotensin-aldosterone system ; Fundamental and applied biological sciences. Psychology ; Homeostasis - physiology ; Hypertension ; Kidney - physiology ; Male ; Models, Biological ; Nonlinear dynamics ; Product data management ; Rats ; Rats, Sprague-Dawley ; Reproduction ; Rodents ; Standard deviation ; Vertebrates: endocrinology</subject><ispartof>Annals of biomedical engineering, 1999, Vol.27 (1), p.23-31</ispartof><rights>1999 INIST-CNRS</rights><rights>Biomedical Engineering Society 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6c709f654766804387fbb1e9f2283cd10166bcec03be2dd2cb540aaf3d03b18b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1643199$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9916757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MARMARELIS, V. Z</creatorcontrib><creatorcontrib>CHON, K. H</creatorcontrib><creatorcontrib>HOLSTEIN-RATHLOU, N. H</creatorcontrib><creatorcontrib>MARSH, D. J</creatorcontrib><title>Nonlinear analysis of renal autoregulation in rats using principal dynamic modes</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results demonstrate that two PDMs suffice for obtaining a satisfactory nonlinear dynamic model of renal autoregulation under these conditions, for both normotensive and hypertensive rats. Furthermore, the two PDMs appear to correspond to the two main autoregulatory mechanisms: the first to the myogenic and the second to the tubuloglomerular feedback (TGF) mechanism. This allows the study of the separate contributions of the two mechanisms to the autoregulatory response dynamics, as well as the effects of the level of pressure forcing and hypertension on the two distinct autoregulatory mechanisms. It is shown that the myogenic mechanism has a larger contribution and is affected only slightly, while the TGF mechanism is affected considerably by increasing pressure forcing or hypertension (the emergence of a second resonant peak and the decreased relative contribution to the response flow signal).</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical engineering</subject><subject>Blood pressure</subject><subject>Broadband</subject><subject>Dynamic tests</subject><subject>Emergence</subject><subject>Endocrine kidney. Renin-angiotensin-aldosterone system</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Homeostasis - physiology</subject><subject>Hypertension</subject><subject>Kidney - physiology</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Nonlinear dynamics</subject><subject>Product data management</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reproduction</subject><subject>Rodents</subject><subject>Standard deviation</subject><subject>Vertebrates: endocrinology</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMo67ruTxCC-HXpmmmapDmK-AWiHvRc0jRdIm2yJu1h_71ZdlHw4GmYmYeXmfdFaA5kAQDFNSzyPN9DU2CCZpKXfB9NCZEk45IXh-goxk9CAErKJmgiJXDBxBS9vXjXWWdUwMqpbh1txL7FwaQGq3HwwSzHTg3WO2wdDmqIeIzWLfEqWKftKmHN2qneatz7xsRjdNCqLpr5rs7Qx_3d--1j9vz68HR785xpKumQcS2IbDkrBOclKWgp2roGI9s8L6lugADntTaa0NrkTZPrmhVEqZY2aQJlTWfocqu7Cv5rNHGoehu16TrljB9jVVIAwXJJE3nxL8klY1SUkMCrf8FkGdAi3brRPP2DfvoxJM9iJRgXnIr0xgydbyEdfIzBtFXyrFdhXQGpNplVUKXMEneyExvr3jQ_1C6ktD_b7VXUqmuDSsbHXzFeUJCSfgMc2pvj</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>MARMARELIS, V. Z</creator><creator>CHON, K. H</creator><creator>HOLSTEIN-RATHLOU, N. H</creator><creator>MARSH, D. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>1999</creationdate><title>Nonlinear analysis of renal autoregulation in rats using principal dynamic modes</title><author>MARMARELIS, V. Z ; CHON, K. H ; HOLSTEIN-RATHLOU, N. H ; MARSH, D. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6c709f654766804387fbb1e9f2283cd10166bcec03be2dd2cb540aaf3d03b18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical engineering</topic><topic>Blood pressure</topic><topic>Broadband</topic><topic>Dynamic tests</topic><topic>Emergence</topic><topic>Endocrine kidney. Renin-angiotensin-aldosterone system</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Homeostasis - physiology</topic><topic>Hypertension</topic><topic>Kidney - physiology</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Nonlinear dynamics</topic><topic>Product data management</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reproduction</topic><topic>Rodents</topic><topic>Standard deviation</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MARMARELIS, V. Z</creatorcontrib><creatorcontrib>CHON, K. H</creatorcontrib><creatorcontrib>HOLSTEIN-RATHLOU, N. H</creatorcontrib><creatorcontrib>MARSH, D. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MARMARELIS, V. Z</au><au>CHON, K. H</au><au>HOLSTEIN-RATHLOU, N. H</au><au>MARSH, D. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear analysis of renal autoregulation in rats using principal dynamic modes</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>1999</date><risdate>1999</risdate><volume>27</volume><issue>1</issue><spage>23</spage><epage>31</epage><pages>23-31</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><coden>ABMECF</coden><abstract>This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results demonstrate that two PDMs suffice for obtaining a satisfactory nonlinear dynamic model of renal autoregulation under these conditions, for both normotensive and hypertensive rats. Furthermore, the two PDMs appear to correspond to the two main autoregulatory mechanisms: the first to the myogenic and the second to the tubuloglomerular feedback (TGF) mechanism. This allows the study of the separate contributions of the two mechanisms to the autoregulatory response dynamics, as well as the effects of the level of pressure forcing and hypertension on the two distinct autoregulatory mechanisms. It is shown that the myogenic mechanism has a larger contribution and is affected only slightly, while the TGF mechanism is affected considerably by increasing pressure forcing or hypertension (the emergence of a second resonant peak and the decreased relative contribution to the response flow signal).</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>9916757</pmid><doi>10.1114/1.222</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 1999, Vol.27 (1), p.23-31 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_831175293 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Biological and medical sciences Biomedical engineering Blood pressure Broadband Dynamic tests Emergence Endocrine kidney. Renin-angiotensin-aldosterone system Fundamental and applied biological sciences. Psychology Homeostasis - physiology Hypertension Kidney - physiology Male Models, Biological Nonlinear dynamics Product data management Rats Rats, Sprague-Dawley Reproduction Rodents Standard deviation Vertebrates: endocrinology |
title | Nonlinear analysis of renal autoregulation in rats using principal dynamic modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20analysis%20of%20renal%20autoregulation%20in%20rats%20using%20principal%20dynamic%20modes&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=MARMARELIS,%20V.%20Z&rft.date=1999&rft.volume=27&rft.issue=1&rft.spage=23&rft.epage=31&rft.pages=23-31&rft.issn=0090-6964&rft.eissn=1573-9686&rft.coden=ABMECF&rft_id=info:doi/10.1114/1.222&rft_dat=%3Cproquest_cross%3E831175293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756763728&rft_id=info:pmid/9916757&rfr_iscdi=true |