Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures

Sutures are fibrous joints between craniofacial bones, providing an interesting model for studying the biomechanics of the interface between soft and mineralized tissues. To explore whether different wave forms of exogenous forces induce corresponding sutural strain wave forms, sutural strain of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2003-10, Vol.31 (9), p.1125-1131
Hauptverfasser: Kopher, Ross A, Nudera, James A, Wang, Xin, O'Grady, Kevin, Mao, Jeremy J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 9
container_start_page 1125
container_title Annals of biomedical engineering
container_volume 31
creator Kopher, Ross A
Nudera, James A
Wang, Xin
O'Grady, Kevin
Mao, Jeremy J
description Sutures are fibrous joints between craniofacial bones, providing an interesting model for studying the biomechanics of the interface between soft and mineralized tissues. To explore whether different wave forms of exogenous forces induce corresponding sutural strain wave forms, sutural strain of the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) of New Zealand White rabbits (N = 8) was recorded upon application of static, sine- and square-wave forces against the maxilla from 1 N to 5 N in 1 N increments. The PMS demonstrated compressive strain, whereas the NFS tensile strain. Despite a tenfold difference in peak PMS strain (- 1451 +/- 512 micro(epsilon)) and NFS strain (141 +/- 39 micro(epsilon)) in response to 5 N cyclic forces, wave forms of exogenous forces were expressed as corresponding wave forms of sutural strain in both the PMS and NFS. Peak sutural strain was similar upon static and sine-wave cyclic loading. Thus, cells and matrix components of fibrous sutural tissue experience different wave forms of exogenous forces as corresponding wave forms of tissue-borne mechanical strain. Current craniofacial orthopedic therapies exclusively utilize static forces to change the shape of craniofacial bones via mechanically induced bone apposition and resorption. The present data provide room for exploring whether cyclic forces capable of inducing different sutural strain wave forms may accelerate sutural anabolic or catabolic responses.
doi_str_mv 10.1114/1.1603259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831174883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17588371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5a3f665e3f43f560b2237c5a35864856f23011fd4e84d9ead7b1cf55ef3934113</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVISTZpD_0DxeTQ0oNTjUdfPpaQpoVAL-3ZyPIoUVhbG8nepv--Mlko9JCeBC_PPKPhZewt8EsAEJ_gEhTHRrZHbANSY90qo47ZhvOW16pV4pSd5fzAOYBBecJOQUjTKJAbNl8_7RLlHOJURV-FqdqHfaxGcvd2Cs5uqzwnW-JlV4gheE-Jprn6ZfdU-ZjGvI7RU7yjKS55jRzl1ZNs34e5cql4orcurK5lXsq21-yVt9tMbw7vOfv55frH1df69vvNt6vPt7VDDXMtLXqlJKEX6KXifdOgdiWVRgkjlW-wXOQHQUYMLdlB9-C8lOSxRQGA5-zDs3eX4uNCee7GkB1tt3ai8tnOIIAWxmAh379IakDgSvP_gqBl8el198U_4ENc0lTO7bRUGpGLFfr4DLkUc07ku10Ko02_O-DdWm0H3aHawr47CJd-pOEveegS_wA5c522</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756733041</pqid></control><display><type>article</type><title>Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kopher, Ross A ; Nudera, James A ; Wang, Xin ; O'Grady, Kevin ; Mao, Jeremy J</creator><creatorcontrib>Kopher, Ross A ; Nudera, James A ; Wang, Xin ; O'Grady, Kevin ; Mao, Jeremy J</creatorcontrib><description>Sutures are fibrous joints between craniofacial bones, providing an interesting model for studying the biomechanics of the interface between soft and mineralized tissues. To explore whether different wave forms of exogenous forces induce corresponding sutural strain wave forms, sutural strain of the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) of New Zealand White rabbits (N = 8) was recorded upon application of static, sine- and square-wave forces against the maxilla from 1 N to 5 N in 1 N increments. The PMS demonstrated compressive strain, whereas the NFS tensile strain. Despite a tenfold difference in peak PMS strain (- 1451 +/- 512 micro(epsilon)) and NFS strain (141 +/- 39 micro(epsilon)) in response to 5 N cyclic forces, wave forms of exogenous forces were expressed as corresponding wave forms of sutural strain in both the PMS and NFS. Peak sutural strain was similar upon static and sine-wave cyclic loading. Thus, cells and matrix components of fibrous sutural tissue experience different wave forms of exogenous forces as corresponding wave forms of tissue-borne mechanical strain. Current craniofacial orthopedic therapies exclusively utilize static forces to change the shape of craniofacial bones via mechanically induced bone apposition and resorption. The present data provide room for exploring whether cyclic forces capable of inducing different sutural strain wave forms may accelerate sutural anabolic or catabolic responses.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1114/1.1603259</identifier><identifier>PMID: 14582615</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Animals ; Biomechanics ; Compressive Strength - physiology ; Cranial Sutures - physiology ; Elasticity ; Male ; Periodicity ; Physical Stimulation - methods ; Rabbits ; Stress, Mechanical ; Weight-Bearing - physiology</subject><ispartof>Annals of biomedical engineering, 2003-10, Vol.31 (9), p.1125-1131</ispartof><rights>Biomedical Engineering Society 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5a3f665e3f43f560b2237c5a35864856f23011fd4e84d9ead7b1cf55ef3934113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14582615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopher, Ross A</creatorcontrib><creatorcontrib>Nudera, James A</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>O'Grady, Kevin</creatorcontrib><creatorcontrib>Mao, Jeremy J</creatorcontrib><title>Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>Sutures are fibrous joints between craniofacial bones, providing an interesting model for studying the biomechanics of the interface between soft and mineralized tissues. To explore whether different wave forms of exogenous forces induce corresponding sutural strain wave forms, sutural strain of the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) of New Zealand White rabbits (N = 8) was recorded upon application of static, sine- and square-wave forces against the maxilla from 1 N to 5 N in 1 N increments. The PMS demonstrated compressive strain, whereas the NFS tensile strain. Despite a tenfold difference in peak PMS strain (- 1451 +/- 512 micro(epsilon)) and NFS strain (141 +/- 39 micro(epsilon)) in response to 5 N cyclic forces, wave forms of exogenous forces were expressed as corresponding wave forms of sutural strain in both the PMS and NFS. Peak sutural strain was similar upon static and sine-wave cyclic loading. Thus, cells and matrix components of fibrous sutural tissue experience different wave forms of exogenous forces as corresponding wave forms of tissue-borne mechanical strain. Current craniofacial orthopedic therapies exclusively utilize static forces to change the shape of craniofacial bones via mechanically induced bone apposition and resorption. The present data provide room for exploring whether cyclic forces capable of inducing different sutural strain wave forms may accelerate sutural anabolic or catabolic responses.</description><subject>Animals</subject><subject>Biomechanics</subject><subject>Compressive Strength - physiology</subject><subject>Cranial Sutures - physiology</subject><subject>Elasticity</subject><subject>Male</subject><subject>Periodicity</subject><subject>Physical Stimulation - methods</subject><subject>Rabbits</subject><subject>Stress, Mechanical</subject><subject>Weight-Bearing - physiology</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhkVISTZpD_0DxeTQ0oNTjUdfPpaQpoVAL-3ZyPIoUVhbG8nepv--Mlko9JCeBC_PPKPhZewt8EsAEJ_gEhTHRrZHbANSY90qo47ZhvOW16pV4pSd5fzAOYBBecJOQUjTKJAbNl8_7RLlHOJURV-FqdqHfaxGcvd2Cs5uqzwnW-JlV4gheE-Jprn6ZfdU-ZjGvI7RU7yjKS55jRzl1ZNs34e5cql4orcurK5lXsq21-yVt9tMbw7vOfv55frH1df69vvNt6vPt7VDDXMtLXqlJKEX6KXifdOgdiWVRgkjlW-wXOQHQUYMLdlB9-C8lOSxRQGA5-zDs3eX4uNCee7GkB1tt3ai8tnOIIAWxmAh379IakDgSvP_gqBl8el198U_4ENc0lTO7bRUGpGLFfr4DLkUc07ku10Ko02_O-DdWm0H3aHawr47CJd-pOEveegS_wA5c522</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Kopher, Ross A</creator><creator>Nudera, James A</creator><creator>Wang, Xin</creator><creator>O'Grady, Kevin</creator><creator>Mao, Jeremy J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures</title><author>Kopher, Ross A ; Nudera, James A ; Wang, Xin ; O'Grady, Kevin ; Mao, Jeremy J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5a3f665e3f43f560b2237c5a35864856f23011fd4e84d9ead7b1cf55ef3934113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biomechanics</topic><topic>Compressive Strength - physiology</topic><topic>Cranial Sutures - physiology</topic><topic>Elasticity</topic><topic>Male</topic><topic>Periodicity</topic><topic>Physical Stimulation - methods</topic><topic>Rabbits</topic><topic>Stress, Mechanical</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopher, Ross A</creatorcontrib><creatorcontrib>Nudera, James A</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>O'Grady, Kevin</creatorcontrib><creatorcontrib>Mao, Jeremy J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopher, Ross A</au><au>Nudera, James A</au><au>Wang, Xin</au><au>O'Grady, Kevin</au><au>Mao, Jeremy J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>31</volume><issue>9</issue><spage>1125</spage><epage>1131</epage><pages>1125-1131</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Sutures are fibrous joints between craniofacial bones, providing an interesting model for studying the biomechanics of the interface between soft and mineralized tissues. To explore whether different wave forms of exogenous forces induce corresponding sutural strain wave forms, sutural strain of the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) of New Zealand White rabbits (N = 8) was recorded upon application of static, sine- and square-wave forces against the maxilla from 1 N to 5 N in 1 N increments. The PMS demonstrated compressive strain, whereas the NFS tensile strain. Despite a tenfold difference in peak PMS strain (- 1451 +/- 512 micro(epsilon)) and NFS strain (141 +/- 39 micro(epsilon)) in response to 5 N cyclic forces, wave forms of exogenous forces were expressed as corresponding wave forms of sutural strain in both the PMS and NFS. Peak sutural strain was similar upon static and sine-wave cyclic loading. Thus, cells and matrix components of fibrous sutural tissue experience different wave forms of exogenous forces as corresponding wave forms of tissue-borne mechanical strain. Current craniofacial orthopedic therapies exclusively utilize static forces to change the shape of craniofacial bones via mechanically induced bone apposition and resorption. The present data provide room for exploring whether cyclic forces capable of inducing different sutural strain wave forms may accelerate sutural anabolic or catabolic responses.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>14582615</pmid><doi>10.1114/1.1603259</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2003-10, Vol.31 (9), p.1125-1131
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_831174883
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biomechanics
Compressive Strength - physiology
Cranial Sutures - physiology
Elasticity
Male
Periodicity
Physical Stimulation - methods
Rabbits
Stress, Mechanical
Weight-Bearing - physiology
title Expression of in vivo mechanical strain upon different wave forms of exogenous forces in rabbit craniofacial sutures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20in%20vivo%20mechanical%20strain%20upon%20different%20wave%20forms%20of%20exogenous%20forces%20in%20rabbit%20craniofacial%20sutures&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Kopher,%20Ross%20A&rft.date=2003-10-01&rft.volume=31&rft.issue=9&rft.spage=1125&rft.epage=1131&rft.pages=1125-1131&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1114/1.1603259&rft_dat=%3Cproquest_cross%3E17588371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756733041&rft_id=info:pmid/14582615&rfr_iscdi=true