A new approach to closed-loop linear system identification via a vector autoregressive model

A new vector autoregressive (VAR) model algorithm is developed for closed-loop identification. The new VAR approach is an extension of a recently developed algorithm, named the optimal parameter search (OPS), thus, we call the new technique VOPS, for vector OPS. Monte Carlo simulations of closed-loo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2002-10, Vol.30 (9), p.1204-1214
Hauptverfasser: Wang, Hengliang, Lu, Sheng, Ju, Kihwan, Chon, Ki H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1214
container_issue 9
container_start_page 1204
container_title Annals of biomedical engineering
container_volume 30
creator Wang, Hengliang
Lu, Sheng
Ju, Kihwan
Chon, Ki H
description A new vector autoregressive (VAR) model algorithm is developed for closed-loop identification. The new VAR approach is an extension of a recently developed algorithm, named the optimal parameter search (OPS), thus, we call the new technique VOPS, for vector OPS. Monte Carlo simulations of closed-loop systems were performed to compare the performance of VOPS to the widely utilized vector least squares (VLS) and vector fast orthogonal search (VFOS) approaches. In addition, we examined the effect on parameter estimates obtained via open-loop identification techniques, when using data from closed-loop systems. Comparative results show that both the VOPS and VFOS algorithms produce far more accurate parameter estimates than does the VLS. Furthermore, open-loop identification via univariate OPS and to a lesser extent univariate FOS for closed-loop systems, does not adversely affect the accuracy of the parameter estimates. An open-loop identification via the univariate least-squares method for closed-loop systems showed the most deleterious effect on the accuracy of the parameter estimates. In addition to developing the VOPS algorithm, we also developed approaches termed constrained OPS (COPS) and constrained FOS (CFOS). For closed-loop systems considered in this paper, both COPS and CFOS resulted in more accurate parameter estimates (less biased and more efficient) than did VLS, VFOS, and VOPS.
doi_str_mv 10.1114/1.1521416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831170960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>831170960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-48d20233001fce80c8a776a023473f58ba0e56e9e46d9afe8dc41c9eec15d1453</originalsourceid><addsrcrecordid>eNp90U1LHEEQBuBGFF1NDv4BaTzEeBjTNf19XMQkwoIXvQWG3p6apGVmetM9s8F_b8suCDl4qYLioajiJeQc2A0AiG9wA7IGAeqALEBqXlll1CFZMGZZpawSJ-Q052fGAAyXx-QEasnqmsOC_FrSEf9Rt9mk6PwfOkXq-5ixrfoYN7QPI7pE80uecKChxXEKXfBuCnGk2-Coo1v0U0zUzaXi74Q5hy3SIbbYfyJHneszft73M_L0_e7x9me1evhxf7tcVZ5rPlXCtDWrOS_3dR4N88ZprVwZCc07adaOoVRoUajWug5N6wV4i-hBtiAkPyNXu73lib8z5qkZQvbY927EOOfGcADNrGJFfvlQ6lpbKywv8OuHEJQGLriWotDL_-hznNNYHm60VJpLxUxB1zvkU8w5YddsUhhcemmANW8hNtDsQyz2Yr9wXg_Yvst9avwVRA2VPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756735608</pqid></control><display><type>article</type><title>A new approach to closed-loop linear system identification via a vector autoregressive model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Hengliang ; Lu, Sheng ; Ju, Kihwan ; Chon, Ki H</creator><creatorcontrib>Wang, Hengliang ; Lu, Sheng ; Ju, Kihwan ; Chon, Ki H</creatorcontrib><description>A new vector autoregressive (VAR) model algorithm is developed for closed-loop identification. The new VAR approach is an extension of a recently developed algorithm, named the optimal parameter search (OPS), thus, we call the new technique VOPS, for vector OPS. Monte Carlo simulations of closed-loop systems were performed to compare the performance of VOPS to the widely utilized vector least squares (VLS) and vector fast orthogonal search (VFOS) approaches. In addition, we examined the effect on parameter estimates obtained via open-loop identification techniques, when using data from closed-loop systems. Comparative results show that both the VOPS and VFOS algorithms produce far more accurate parameter estimates than does the VLS. Furthermore, open-loop identification via univariate OPS and to a lesser extent univariate FOS for closed-loop systems, does not adversely affect the accuracy of the parameter estimates. An open-loop identification via the univariate least-squares method for closed-loop systems showed the most deleterious effect on the accuracy of the parameter estimates. In addition to developing the VOPS algorithm, we also developed approaches termed constrained OPS (COPS) and constrained FOS (CFOS). For closed-loop systems considered in this paper, both COPS and CFOS resulted in more accurate parameter estimates (less biased and more efficient) than did VLS, VFOS, and VOPS.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1114/1.1521416</identifier><identifier>PMID: 12502231</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Algorithms ; Biomedical Engineering ; Computer Simulation ; Economic models ; Estimates ; Least squares method ; Least-Squares Analysis ; Linear Models ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Regression Analysis ; Studies ; VAR ; Vectors (mathematics)</subject><ispartof>Annals of biomedical engineering, 2002-10, Vol.30 (9), p.1204-1214</ispartof><rights>Biomedical Engineering Society 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-48d20233001fce80c8a776a023473f58ba0e56e9e46d9afe8dc41c9eec15d1453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12502231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hengliang</creatorcontrib><creatorcontrib>Lu, Sheng</creatorcontrib><creatorcontrib>Ju, Kihwan</creatorcontrib><creatorcontrib>Chon, Ki H</creatorcontrib><title>A new approach to closed-loop linear system identification via a vector autoregressive model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>A new vector autoregressive (VAR) model algorithm is developed for closed-loop identification. The new VAR approach is an extension of a recently developed algorithm, named the optimal parameter search (OPS), thus, we call the new technique VOPS, for vector OPS. Monte Carlo simulations of closed-loop systems were performed to compare the performance of VOPS to the widely utilized vector least squares (VLS) and vector fast orthogonal search (VFOS) approaches. In addition, we examined the effect on parameter estimates obtained via open-loop identification techniques, when using data from closed-loop systems. Comparative results show that both the VOPS and VFOS algorithms produce far more accurate parameter estimates than does the VLS. Furthermore, open-loop identification via univariate OPS and to a lesser extent univariate FOS for closed-loop systems, does not adversely affect the accuracy of the parameter estimates. An open-loop identification via the univariate least-squares method for closed-loop systems showed the most deleterious effect on the accuracy of the parameter estimates. In addition to developing the VOPS algorithm, we also developed approaches termed constrained OPS (COPS) and constrained FOS (CFOS). For closed-loop systems considered in this paper, both COPS and CFOS resulted in more accurate parameter estimates (less biased and more efficient) than did VLS, VFOS, and VOPS.</description><subject>Algorithms</subject><subject>Biomedical Engineering</subject><subject>Computer Simulation</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Regression Analysis</subject><subject>Studies</subject><subject>VAR</subject><subject>Vectors (mathematics)</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp90U1LHEEQBuBGFF1NDv4BaTzEeBjTNf19XMQkwoIXvQWG3p6apGVmetM9s8F_b8suCDl4qYLioajiJeQc2A0AiG9wA7IGAeqALEBqXlll1CFZMGZZpawSJ-Q052fGAAyXx-QEasnqmsOC_FrSEf9Rt9mk6PwfOkXq-5ixrfoYN7QPI7pE80uecKChxXEKXfBuCnGk2-Coo1v0U0zUzaXi74Q5hy3SIbbYfyJHneszft73M_L0_e7x9me1evhxf7tcVZ5rPlXCtDWrOS_3dR4N88ZprVwZCc07adaOoVRoUajWug5N6wV4i-hBtiAkPyNXu73lib8z5qkZQvbY927EOOfGcADNrGJFfvlQ6lpbKywv8OuHEJQGLriWotDL_-hznNNYHm60VJpLxUxB1zvkU8w5YddsUhhcemmANW8hNtDsQyz2Yr9wXg_Yvst9avwVRA2VPg</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Wang, Hengliang</creator><creator>Lu, Sheng</creator><creator>Ju, Kihwan</creator><creator>Chon, Ki H</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20021001</creationdate><title>A new approach to closed-loop linear system identification via a vector autoregressive model</title><author>Wang, Hengliang ; Lu, Sheng ; Ju, Kihwan ; Chon, Ki H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-48d20233001fce80c8a776a023473f58ba0e56e9e46d9afe8dc41c9eec15d1453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Biomedical Engineering</topic><topic>Computer Simulation</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Regression Analysis</topic><topic>Studies</topic><topic>VAR</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hengliang</creatorcontrib><creatorcontrib>Lu, Sheng</creatorcontrib><creatorcontrib>Ju, Kihwan</creatorcontrib><creatorcontrib>Chon, Ki H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hengliang</au><au>Lu, Sheng</au><au>Ju, Kihwan</au><au>Chon, Ki H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to closed-loop linear system identification via a vector autoregressive model</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>30</volume><issue>9</issue><spage>1204</spage><epage>1214</epage><pages>1204-1214</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>A new vector autoregressive (VAR) model algorithm is developed for closed-loop identification. The new VAR approach is an extension of a recently developed algorithm, named the optimal parameter search (OPS), thus, we call the new technique VOPS, for vector OPS. Monte Carlo simulations of closed-loop systems were performed to compare the performance of VOPS to the widely utilized vector least squares (VLS) and vector fast orthogonal search (VFOS) approaches. In addition, we examined the effect on parameter estimates obtained via open-loop identification techniques, when using data from closed-loop systems. Comparative results show that both the VOPS and VFOS algorithms produce far more accurate parameter estimates than does the VLS. Furthermore, open-loop identification via univariate OPS and to a lesser extent univariate FOS for closed-loop systems, does not adversely affect the accuracy of the parameter estimates. An open-loop identification via the univariate least-squares method for closed-loop systems showed the most deleterious effect on the accuracy of the parameter estimates. In addition to developing the VOPS algorithm, we also developed approaches termed constrained OPS (COPS) and constrained FOS (CFOS). For closed-loop systems considered in this paper, both COPS and CFOS resulted in more accurate parameter estimates (less biased and more efficient) than did VLS, VFOS, and VOPS.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12502231</pmid><doi>10.1114/1.1521416</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2002-10, Vol.30 (9), p.1204-1214
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_831170960
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Biomedical Engineering
Computer Simulation
Economic models
Estimates
Least squares method
Least-Squares Analysis
Linear Models
Mathematical analysis
Mathematical models
Monte Carlo methods
Monte Carlo simulation
Regression Analysis
Studies
VAR
Vectors (mathematics)
title A new approach to closed-loop linear system identification via a vector autoregressive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20closed-loop%20linear%20system%20identification%20via%20a%20vector%20autoregressive%20model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Wang,%20Hengliang&rft.date=2002-10-01&rft.volume=30&rft.issue=9&rft.spage=1204&rft.epage=1214&rft.pages=1204-1214&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1114/1.1521416&rft_dat=%3Cproquest_cross%3E831170960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756735608&rft_id=info:pmid/12502231&rfr_iscdi=true