An FPGA-Based Linear All-Digital Phase-Locked Loop
In this paper, an all-digital phase-locked loop (ADPLL) is presented, and it is implemented on a field-programmable gate array. All components like the phase detector (PD), oscillator, and loop filter are realized as digital discrete-time components fed from analog-to-digital converters. The phase d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2010-09, Vol.57 (9), p.2487-2497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2497 |
---|---|
container_issue | 9 |
container_start_page | 2487 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 57 |
creator | Kumm, Martin Klingbeil, Harald Zipf, Peter |
description | In this paper, an all-digital phase-locked loop (ADPLL) is presented, and it is implemented on a field-programmable gate array. All components like the phase detector (PD), oscillator, and loop filter are realized as digital discrete-time components fed from analog-to-digital converters. The phase detection is realized by generating first an analytic signal using a compact implementation of the Hilbert transform and then computing the instantaneous phase with the CORDIC algorithm. A phase-unwrap component was realized, which extends the linear range of the PD, so that the linear model is valid in the full frequency range. This property leads to a constant lock-in time for arbitrary frequency changes. An analytic solution for the lock-in frequency range and the stability range including processing delays is given. All relations to design an ADPLL of the presented structure are derived. A detailed example application of an ADPLL designed as an offset local oscillator is given. |
doi_str_mv | 10.1109/TCSI.2010.2046237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831165779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5456240</ieee_id><sourcerecordid>2723847231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-e4d4dbc0ef803a25ed566e4d88b290867f768dc9b1f37decd7aab18769d3d2ce3</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqXwAIglEgOTiy_xJWNoaakUiUqU2XLsE0hJkxK3A2-Po1YMTOfyf-eiH6FbSiaUkuxxPX1bThiJJSOpZFydoREVQmOiiTwf8jTDmjN9ia5C2BDCMsLpCLG8TearRY6fbACfFHULtk_ypsGz-qPe2yZZfUYFF537GvSu212ji8o2AW5OcYze58_r6QsuXhfLaV5gxxXfY0h96ktHoNKEWybACyljU-sy3tZSVUpq77KSVlx5cF5ZW1KtZOa5Zw74GD0c9-767vsAYW-2dXDQNLaF7hCM5pRKoVQWyft_5KY79G18zlDCCWWEizRS9Ei5vguhh8rs-npr-58ImcFEM5hoBhPNycQ4c3ecqQHgjxepkCwl_BeihmrD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030120354</pqid></control><display><type>article</type><title>An FPGA-Based Linear All-Digital Phase-Locked Loop</title><source>IEEE Electronic Library (IEL)</source><creator>Kumm, Martin ; Klingbeil, Harald ; Zipf, Peter</creator><creatorcontrib>Kumm, Martin ; Klingbeil, Harald ; Zipf, Peter</creatorcontrib><description>In this paper, an all-digital phase-locked loop (ADPLL) is presented, and it is implemented on a field-programmable gate array. All components like the phase detector (PD), oscillator, and loop filter are realized as digital discrete-time components fed from analog-to-digital converters. The phase detection is realized by generating first an analytic signal using a compact implementation of the Hilbert transform and then computing the instantaneous phase with the CORDIC algorithm. A phase-unwrap component was realized, which extends the linear range of the PD, so that the linear model is valid in the full frequency range. This property leads to a constant lock-in time for arbitrary frequency changes. An analytic solution for the lock-in frequency range and the stability range including processing delays is given. All relations to design an ADPLL of the presented structure are derived. A detailed example application of an ADPLL designed as an offset local oscillator is given.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2010.2046237</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; All-digital phase-locked loop (ADPLL) ; Analog-digital conversion ; Delay ; Detectors ; Digital ; Digital filters ; direct digital synthesizer (DDS) ; Exact solutions ; Field programmable analog arrays ; Field programmable gate arrays ; field-programmable gate array (FPGA) ; Frequency ; Frequency ranges ; Mathematical analysis ; Oscillators ; Phase detection ; Phase detectors ; Phase locked loops ; Phase transformations ; Phased arrays ; PLL ; Studies</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2010-09, Vol.57 (9), p.2487-2497</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-e4d4dbc0ef803a25ed566e4d88b290867f768dc9b1f37decd7aab18769d3d2ce3</citedby><cites>FETCH-LOGICAL-c373t-e4d4dbc0ef803a25ed566e4d88b290867f768dc9b1f37decd7aab18769d3d2ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5456240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5456240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Klingbeil, Harald</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><title>An FPGA-Based Linear All-Digital Phase-Locked Loop</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>In this paper, an all-digital phase-locked loop (ADPLL) is presented, and it is implemented on a field-programmable gate array. All components like the phase detector (PD), oscillator, and loop filter are realized as digital discrete-time components fed from analog-to-digital converters. The phase detection is realized by generating first an analytic signal using a compact implementation of the Hilbert transform and then computing the instantaneous phase with the CORDIC algorithm. A phase-unwrap component was realized, which extends the linear range of the PD, so that the linear model is valid in the full frequency range. This property leads to a constant lock-in time for arbitrary frequency changes. An analytic solution for the lock-in frequency range and the stability range including processing delays is given. All relations to design an ADPLL of the presented structure are derived. A detailed example application of an ADPLL designed as an offset local oscillator is given.</description><subject>Algorithms</subject><subject>All-digital phase-locked loop (ADPLL)</subject><subject>Analog-digital conversion</subject><subject>Delay</subject><subject>Detectors</subject><subject>Digital</subject><subject>Digital filters</subject><subject>direct digital synthesizer (DDS)</subject><subject>Exact solutions</subject><subject>Field programmable analog arrays</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array (FPGA)</subject><subject>Frequency</subject><subject>Frequency ranges</subject><subject>Mathematical analysis</subject><subject>Oscillators</subject><subject>Phase detection</subject><subject>Phase detectors</subject><subject>Phase locked loops</subject><subject>Phase transformations</subject><subject>Phased arrays</subject><subject>PLL</subject><subject>Studies</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOwzAUhi0EEqXwAIglEgOTiy_xJWNoaakUiUqU2XLsE0hJkxK3A2-Po1YMTOfyf-eiH6FbSiaUkuxxPX1bThiJJSOpZFydoREVQmOiiTwf8jTDmjN9ia5C2BDCMsLpCLG8TearRY6fbACfFHULtk_ypsGz-qPe2yZZfUYFF537GvSu212ji8o2AW5OcYze58_r6QsuXhfLaV5gxxXfY0h96ktHoNKEWybACyljU-sy3tZSVUpq77KSVlx5cF5ZW1KtZOa5Zw74GD0c9-767vsAYW-2dXDQNLaF7hCM5pRKoVQWyft_5KY79G18zlDCCWWEizRS9Ei5vguhh8rs-npr-58ImcFEM5hoBhPNycQ4c3ecqQHgjxepkCwl_BeihmrD</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Kumm, Martin</creator><creator>Klingbeil, Harald</creator><creator>Zipf, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100901</creationdate><title>An FPGA-Based Linear All-Digital Phase-Locked Loop</title><author>Kumm, Martin ; Klingbeil, Harald ; Zipf, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-e4d4dbc0ef803a25ed566e4d88b290867f768dc9b1f37decd7aab18769d3d2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>All-digital phase-locked loop (ADPLL)</topic><topic>Analog-digital conversion</topic><topic>Delay</topic><topic>Detectors</topic><topic>Digital</topic><topic>Digital filters</topic><topic>direct digital synthesizer (DDS)</topic><topic>Exact solutions</topic><topic>Field programmable analog arrays</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array (FPGA)</topic><topic>Frequency</topic><topic>Frequency ranges</topic><topic>Mathematical analysis</topic><topic>Oscillators</topic><topic>Phase detection</topic><topic>Phase detectors</topic><topic>Phase locked loops</topic><topic>Phase transformations</topic><topic>Phased arrays</topic><topic>PLL</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Klingbeil, Harald</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumm, Martin</au><au>Klingbeil, Harald</au><au>Zipf, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An FPGA-Based Linear All-Digital Phase-Locked Loop</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>57</volume><issue>9</issue><spage>2487</spage><epage>2497</epage><pages>2487-2497</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this paper, an all-digital phase-locked loop (ADPLL) is presented, and it is implemented on a field-programmable gate array. All components like the phase detector (PD), oscillator, and loop filter are realized as digital discrete-time components fed from analog-to-digital converters. The phase detection is realized by generating first an analytic signal using a compact implementation of the Hilbert transform and then computing the instantaneous phase with the CORDIC algorithm. A phase-unwrap component was realized, which extends the linear range of the PD, so that the linear model is valid in the full frequency range. This property leads to a constant lock-in time for arbitrary frequency changes. An analytic solution for the lock-in frequency range and the stability range including processing delays is given. All relations to design an ADPLL of the presented structure are derived. A detailed example application of an ADPLL designed as an offset local oscillator is given.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2010.2046237</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2010-09, Vol.57 (9), p.2487-2497 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_miscellaneous_831165779 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms All-digital phase-locked loop (ADPLL) Analog-digital conversion Delay Detectors Digital Digital filters direct digital synthesizer (DDS) Exact solutions Field programmable analog arrays Field programmable gate arrays field-programmable gate array (FPGA) Frequency Frequency ranges Mathematical analysis Oscillators Phase detection Phase detectors Phase locked loops Phase transformations Phased arrays PLL Studies |
title | An FPGA-Based Linear All-Digital Phase-Locked Loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20FPGA-Based%20Linear%20All-Digital%20Phase-Locked%20Loop&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Kumm,%20Martin&rft.date=2010-09-01&rft.volume=57&rft.issue=9&rft.spage=2487&rft.epage=2497&rft.pages=2487-2497&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2010.2046237&rft_dat=%3Cproquest_RIE%3E2723847231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030120354&rft_id=info:pmid/&rft_ieee_id=5456240&rfr_iscdi=true |