Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies
The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (R...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 1999-12, Vol.10 (12), p.837-839 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 839 |
---|---|
container_issue | 12 |
container_start_page | 837 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 10 |
creator | Schaffner, P Meyer, J Dard, M Wenz, R Nies, B Verrier, S Kessler, H Kantlehner, M |
description | The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (RGD) peptides, a class of cellular adhesion factors, are described in this paper. The RGD-peptides are either bound via bovine serum albumin linking on culture plastic dishes as a model surface or via acrylic acid coupling on PMMA surface as a potential implant material. Resulting functionalized surfaces aquire the capability to bind cultured osteoblasts in high levels and show high proliferation rates in vitro. These results are observed for osteoblast cultures as well as from different species with different preparation procedures. A critical minimum distance between the bioactive portion of the RGD-peptides and the implant surface of 3.0-3.5 nm is crucial for the induction of an optimum cell binding process. In vivo animal studies in the rabbit show that newly formed bone tissue generated a direct contact with the RGD-peptide coated implants. In contrast uncoated implants are separated from newly formed bone tissue by a fibrous tissue layer thereby preventing the formation of a direct implant-bone bonding. |
doi_str_mv | 10.1023/A:1008904513304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_831162881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69552843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-502143a76c2106334ee9599ac000051126bb271de16dc2ae2b836d28abcf809b3</originalsourceid><addsrcrecordid>eNqFkb1rHDEQxUVIiM9OandBpLCrTTQaSatNZ_wVgyEQknrRSnOOzN1qs9Ke8X8fwdmNC6caZt6PB-8NY8cgvoCQ-PXsGwhhO6E0IAr1hq1At9goi_YtW4lOt43SKA7YYc73QgjVaf2eHYBG1XYGVqzcjGHxFHiJOS_E41jobnYlppGnNR_SWG_baePGkvnwyH2q2njHH2L5s1czbciXuCP-8_qimWgqMVCuRnwXy5y4G8N-2SWeyxIi5Q_s3dptMn18mkfs99Xlr_Pvze2P65vzs9vGo8LSaCFBoWuNlyAMoiLqdNc5X4MIDSDNMMgWAoEJXjqSg0UTpHWDX1vRDXjETve-05z-LpRLv43Z06amobTk3iKAkdZCJU9eJU3tTVqF_wUBtVbCqAp-fgHep2Uea9y-1UZqEGgq9OkJWoYthX6a49bNj_3zf_AfUhaQ-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756251036</pqid></control><display><type>article</type><title>Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schaffner, P ; Meyer, J ; Dard, M ; Wenz, R ; Nies, B ; Verrier, S ; Kessler, H ; Kantlehner, M</creator><creatorcontrib>Schaffner, P ; Meyer, J ; Dard, M ; Wenz, R ; Nies, B ; Verrier, S ; Kessler, H ; Kantlehner, M</creatorcontrib><description>The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (RGD) peptides, a class of cellular adhesion factors, are described in this paper. The RGD-peptides are either bound via bovine serum albumin linking on culture plastic dishes as a model surface or via acrylic acid coupling on PMMA surface as a potential implant material. Resulting functionalized surfaces aquire the capability to bind cultured osteoblasts in high levels and show high proliferation rates in vitro. These results are observed for osteoblast cultures as well as from different species with different preparation procedures. A critical minimum distance between the bioactive portion of the RGD-peptides and the implant surface of 3.0-3.5 nm is crucial for the induction of an optimum cell binding process. In vivo animal studies in the rabbit show that newly formed bone tissue generated a direct contact with the RGD-peptide coated implants. In contrast uncoated implants are separated from newly formed bone tissue by a fibrous tissue layer thereby preventing the formation of a direct implant-bone bonding.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1023/A:1008904513304</identifier><identifier>PMID: 15347961</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Adhesion ; Amino acids ; Animal cell culture ; Biomedical materials ; Bone ; Materials science ; Peptides ; Polymethyl methacrylates ; Proteins ; Transplants & implants</subject><ispartof>Journal of materials science. Materials in medicine, 1999-12, Vol.10 (12), p.837-839</ispartof><rights>Copyright 1999 Kluwer Academic Publishers</rights><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-502143a76c2106334ee9599ac000051126bb271de16dc2ae2b836d28abcf809b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15347961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaffner, P</creatorcontrib><creatorcontrib>Meyer, J</creatorcontrib><creatorcontrib>Dard, M</creatorcontrib><creatorcontrib>Wenz, R</creatorcontrib><creatorcontrib>Nies, B</creatorcontrib><creatorcontrib>Verrier, S</creatorcontrib><creatorcontrib>Kessler, H</creatorcontrib><creatorcontrib>Kantlehner, M</creatorcontrib><title>Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci Mater Med</addtitle><description>The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (RGD) peptides, a class of cellular adhesion factors, are described in this paper. The RGD-peptides are either bound via bovine serum albumin linking on culture plastic dishes as a model surface or via acrylic acid coupling on PMMA surface as a potential implant material. Resulting functionalized surfaces aquire the capability to bind cultured osteoblasts in high levels and show high proliferation rates in vitro. These results are observed for osteoblast cultures as well as from different species with different preparation procedures. A critical minimum distance between the bioactive portion of the RGD-peptides and the implant surface of 3.0-3.5 nm is crucial for the induction of an optimum cell binding process. In vivo animal studies in the rabbit show that newly formed bone tissue generated a direct contact with the RGD-peptide coated implants. In contrast uncoated implants are separated from newly formed bone tissue by a fibrous tissue layer thereby preventing the formation of a direct implant-bone bonding.</description><subject>Adhesion</subject><subject>Amino acids</subject><subject>Animal cell culture</subject><subject>Biomedical materials</subject><subject>Bone</subject><subject>Materials science</subject><subject>Peptides</subject><subject>Polymethyl methacrylates</subject><subject>Proteins</subject><subject>Transplants & implants</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkb1rHDEQxUVIiM9OandBpLCrTTQaSatNZ_wVgyEQknrRSnOOzN1qs9Ke8X8fwdmNC6caZt6PB-8NY8cgvoCQ-PXsGwhhO6E0IAr1hq1At9goi_YtW4lOt43SKA7YYc73QgjVaf2eHYBG1XYGVqzcjGHxFHiJOS_E41jobnYlppGnNR_SWG_baePGkvnwyH2q2njHH2L5s1czbciXuCP-8_qimWgqMVCuRnwXy5y4G8N-2SWeyxIi5Q_s3dptMn18mkfs99Xlr_Pvze2P65vzs9vGo8LSaCFBoWuNlyAMoiLqdNc5X4MIDSDNMMgWAoEJXjqSg0UTpHWDX1vRDXjETve-05z-LpRLv43Z06amobTk3iKAkdZCJU9eJU3tTVqF_wUBtVbCqAp-fgHep2Uea9y-1UZqEGgq9OkJWoYthX6a49bNj_3zf_AfUhaQ-A</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Schaffner, P</creator><creator>Meyer, J</creator><creator>Dard, M</creator><creator>Wenz, R</creator><creator>Nies, B</creator><creator>Verrier, S</creator><creator>Kessler, H</creator><creator>Kantlehner, M</creator><general>Springer Nature B.V</general><scope>NPM</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>7QP</scope></search><sort><creationdate>19991201</creationdate><title>Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies</title><author>Schaffner, P ; Meyer, J ; Dard, M ; Wenz, R ; Nies, B ; Verrier, S ; Kessler, H ; Kantlehner, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-502143a76c2106334ee9599ac000051126bb271de16dc2ae2b836d28abcf809b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adhesion</topic><topic>Amino acids</topic><topic>Animal cell culture</topic><topic>Biomedical materials</topic><topic>Bone</topic><topic>Materials science</topic><topic>Peptides</topic><topic>Polymethyl methacrylates</topic><topic>Proteins</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaffner, P</creatorcontrib><creatorcontrib>Meyer, J</creatorcontrib><creatorcontrib>Dard, M</creatorcontrib><creatorcontrib>Wenz, R</creatorcontrib><creatorcontrib>Nies, B</creatorcontrib><creatorcontrib>Verrier, S</creatorcontrib><creatorcontrib>Kessler, H</creatorcontrib><creatorcontrib>Kantlehner, M</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaffner, P</au><au>Meyer, J</au><au>Dard, M</au><au>Wenz, R</au><au>Nies, B</au><au>Verrier, S</au><au>Kessler, H</au><au>Kantlehner, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><addtitle>J Mater Sci Mater Med</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>10</volume><issue>12</issue><spage>837</spage><epage>839</epage><pages>837-839</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (RGD) peptides, a class of cellular adhesion factors, are described in this paper. The RGD-peptides are either bound via bovine serum albumin linking on culture plastic dishes as a model surface or via acrylic acid coupling on PMMA surface as a potential implant material. Resulting functionalized surfaces aquire the capability to bind cultured osteoblasts in high levels and show high proliferation rates in vitro. These results are observed for osteoblast cultures as well as from different species with different preparation procedures. A critical minimum distance between the bioactive portion of the RGD-peptides and the implant surface of 3.0-3.5 nm is crucial for the induction of an optimum cell binding process. In vivo animal studies in the rabbit show that newly formed bone tissue generated a direct contact with the RGD-peptide coated implants. In contrast uncoated implants are separated from newly formed bone tissue by a fibrous tissue layer thereby preventing the formation of a direct implant-bone bonding.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15347961</pmid><doi>10.1023/A:1008904513304</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 1999-12, Vol.10 (12), p.837-839 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_831162881 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesion Amino acids Animal cell culture Biomedical materials Bone Materials science Peptides Polymethyl methacrylates Proteins Transplants & implants |
title | Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20tissue%20integration%20of%20bone%20implants%20by%20coating%20with%20bone%20selective%20RGD-peptides%20in%20vitro%20and%20in%20vivo%20studies&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Schaffner,%20P&rft.date=1999-12-01&rft.volume=10&rft.issue=12&rft.spage=837&rft.epage=839&rft.pages=837-839&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1023/A:1008904513304&rft_dat=%3Cproquest_pubme%3E69552843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756251036&rft_id=info:pmid/15347961&rfr_iscdi=true |