Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips

The recent emergence of lab-on-a-chip (LoC) technology has led to a paradigm shift in many healthcare-related application areas, e.g., point-of-care clinical diagnostics, high-throughput sequencing, and proteomics. A promising category of LoCs is digital microfluidic (DMF)-based biochips, in which n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2010-11, Vol.29 (11), p.1696-1708
Hauptverfasser: Roy, Sudip, Bhattacharya, Bhargab B, Chakrabarty, Krishnendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1708
container_issue 11
container_start_page 1696
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 29
creator Roy, Sudip
Bhattacharya, Bhargab B
Chakrabarty, Krishnendu
description The recent emergence of lab-on-a-chip (LoC) technology has led to a paradigm shift in many healthcare-related application areas, e.g., point-of-care clinical diagnostics, high-throughput sequencing, and proteomics. A promising category of LoCs is digital microfluidic (DMF)-based biochips, in which nanoliter-volume fluid droplets are manipulated on a 2-D electrode array. A key challenge in designing such chips and mapping lab-bench protocols to a LoC is to carry out the dilution process of biochemical samples efficiently. As an optimization and automation technique, we present a dilution/mixing algorithm that significantly reduces the production of waste droplets. This algorithm takes O ( n ) time to compute at most n sequential mix/split operations required to achieve any given target concentration with an error in concentration factor less than [1/(2 n )]. To implement the algorithm, we design an architectural layout of a DMF-based LoC consisting of two O ( n )-size rotary mixers and O ( n ) storage electrodes. Simulation results show that the proposed technique always yields nonnegative savings in the number of waste droplets and also in the total number of input droplets compared to earlier methods.
doi_str_mv 10.1109/TCAD.2010.2061790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831161960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5605330</ieee_id><sourcerecordid>831161960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-cde6ee536447bfb41556cd64a51cfe57873271c0b72bb7898c2fb348053d7e543</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwAYhNJBasUvyI7WRZWl5Sqy5ot1iO45Sp8iJOJODrcQhiwcrjmTPW9UHokuAZITi53S7myxnF_kqxIDLBR2hCEibDiHByjCaYyjjEWOJTdObcAWMScZpM0Oum6aCEL91BXQV1Hiyh6H9qXWXBGj6g2g_tO6jNmy3B6CJ40WVTWBfs3DBcwh46312Daeu86CEDM-LQuHN0kuvC2Yvfc4p2D_fbxVO42jw-L-ar0LCEdKHJrLCWMxFFMs1Tn5kLk4lIc2Jyy2UsGZXE4FTSNJVxEhuapyyKMWeZtDxiU3Qzvtu09XtvXadKcMYWha5s3TsVM0IESQT25PU_8lD3beXDKYKZ18JoLDxFRsr_ybnW5qppodTtp4fUIFwNwtUgXP0K9ztX4w5Ya_94LnxIhtk3haN7kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030143286</pqid></control><display><type>article</type><title>Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Sudip ; Bhattacharya, Bhargab B ; Chakrabarty, Krishnendu</creator><creatorcontrib>Roy, Sudip ; Bhattacharya, Bhargab B ; Chakrabarty, Krishnendu</creatorcontrib><description>The recent emergence of lab-on-a-chip (LoC) technology has led to a paradigm shift in many healthcare-related application areas, e.g., point-of-care clinical diagnostics, high-throughput sequencing, and proteomics. A promising category of LoCs is digital microfluidic (DMF)-based biochips, in which nanoliter-volume fluid droplets are manipulated on a 2-D electrode array. A key challenge in designing such chips and mapping lab-bench protocols to a LoC is to carry out the dilution process of biochemical samples efficiently. As an optimization and automation technique, we present a dilution/mixing algorithm that significantly reduces the production of waste droplets. This algorithm takes O ( n ) time to compute at most n sequential mix/split operations required to achieve any given target concentration with an error in concentration factor less than [1/(2 n )]. To implement the algorithm, we design an architectural layout of a DMF-based LoC consisting of two O ( n )-size rotary mixers and O ( n ) storage electrodes. Simulation results show that the proposed technique always yields nonnegative savings in the number of waste droplets and also in the total number of input droplets compared to earlier methods.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2010.2061790</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Arrays ; Biochips ; computer-aided-design ; Design automation ; Design engineering ; Digital ; digital microfluidics (DMFs) ; Dilution ; dilution of biosamples ; Droplets ; Electrodes ; Layout ; Microfluidics ; mixing algorithms ; Nanostructure ; Optimization ; Studies ; System-on-a-chip ; waste minimization ; Wastes</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2010-11, Vol.29 (11), p.1696-1708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-cde6ee536447bfb41556cd64a51cfe57873271c0b72bb7898c2fb348053d7e543</citedby><cites>FETCH-LOGICAL-c391t-cde6ee536447bfb41556cd64a51cfe57873271c0b72bb7898c2fb348053d7e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5605330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5605330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Sudip</creatorcontrib><creatorcontrib>Bhattacharya, Bhargab B</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><title>Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>The recent emergence of lab-on-a-chip (LoC) technology has led to a paradigm shift in many healthcare-related application areas, e.g., point-of-care clinical diagnostics, high-throughput sequencing, and proteomics. A promising category of LoCs is digital microfluidic (DMF)-based biochips, in which nanoliter-volume fluid droplets are manipulated on a 2-D electrode array. A key challenge in designing such chips and mapping lab-bench protocols to a LoC is to carry out the dilution process of biochemical samples efficiently. As an optimization and automation technique, we present a dilution/mixing algorithm that significantly reduces the production of waste droplets. This algorithm takes O ( n ) time to compute at most n sequential mix/split operations required to achieve any given target concentration with an error in concentration factor less than [1/(2 n )]. To implement the algorithm, we design an architectural layout of a DMF-based LoC consisting of two O ( n )-size rotary mixers and O ( n ) storage electrodes. Simulation results show that the proposed technique always yields nonnegative savings in the number of waste droplets and also in the total number of input droplets compared to earlier methods.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Arrays</subject><subject>Biochips</subject><subject>computer-aided-design</subject><subject>Design automation</subject><subject>Design engineering</subject><subject>Digital</subject><subject>digital microfluidics (DMFs)</subject><subject>Dilution</subject><subject>dilution of biosamples</subject><subject>Droplets</subject><subject>Electrodes</subject><subject>Layout</subject><subject>Microfluidics</subject><subject>mixing algorithms</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Studies</subject><subject>System-on-a-chip</subject><subject>waste minimization</subject><subject>Wastes</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwAYhNJBasUvyI7WRZWl5Sqy5ot1iO45Sp8iJOJODrcQhiwcrjmTPW9UHokuAZITi53S7myxnF_kqxIDLBR2hCEibDiHByjCaYyjjEWOJTdObcAWMScZpM0Oum6aCEL91BXQV1Hiyh6H9qXWXBGj6g2g_tO6jNmy3B6CJ40WVTWBfs3DBcwh46312Daeu86CEDM-LQuHN0kuvC2Yvfc4p2D_fbxVO42jw-L-ar0LCEdKHJrLCWMxFFMs1Tn5kLk4lIc2Jyy2UsGZXE4FTSNJVxEhuapyyKMWeZtDxiU3Qzvtu09XtvXadKcMYWha5s3TsVM0IESQT25PU_8lD3beXDKYKZ18JoLDxFRsr_ybnW5qppodTtp4fUIFwNwtUgXP0K9ztX4w5Ya_94LnxIhtk3haN7kQ</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Roy, Sudip</creator><creator>Bhattacharya, Bhargab B</creator><creator>Chakrabarty, Krishnendu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201011</creationdate><title>Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips</title><author>Roy, Sudip ; Bhattacharya, Bhargab B ; Chakrabarty, Krishnendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-cde6ee536447bfb41556cd64a51cfe57873271c0b72bb7898c2fb348053d7e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Arrays</topic><topic>Biochips</topic><topic>computer-aided-design</topic><topic>Design automation</topic><topic>Design engineering</topic><topic>Digital</topic><topic>digital microfluidics (DMFs)</topic><topic>Dilution</topic><topic>dilution of biosamples</topic><topic>Droplets</topic><topic>Electrodes</topic><topic>Layout</topic><topic>Microfluidics</topic><topic>mixing algorithms</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Studies</topic><topic>System-on-a-chip</topic><topic>waste minimization</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Sudip</creatorcontrib><creatorcontrib>Bhattacharya, Bhargab B</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Sudip</au><au>Bhattacharya, Bhargab B</au><au>Chakrabarty, Krishnendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2010-11</date><risdate>2010</risdate><volume>29</volume><issue>11</issue><spage>1696</spage><epage>1708</epage><pages>1696-1708</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>The recent emergence of lab-on-a-chip (LoC) technology has led to a paradigm shift in many healthcare-related application areas, e.g., point-of-care clinical diagnostics, high-throughput sequencing, and proteomics. A promising category of LoCs is digital microfluidic (DMF)-based biochips, in which nanoliter-volume fluid droplets are manipulated on a 2-D electrode array. A key challenge in designing such chips and mapping lab-bench protocols to a LoC is to carry out the dilution process of biochemical samples efficiently. As an optimization and automation technique, we present a dilution/mixing algorithm that significantly reduces the production of waste droplets. This algorithm takes O ( n ) time to compute at most n sequential mix/split operations required to achieve any given target concentration with an error in concentration factor less than [1/(2 n )]. To implement the algorithm, we design an architectural layout of a DMF-based LoC consisting of two O ( n )-size rotary mixers and O ( n ) storage electrodes. Simulation results show that the proposed technique always yields nonnegative savings in the number of waste droplets and also in the total number of input droplets compared to earlier methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2010.2061790</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2010-11, Vol.29 (11), p.1696-1708
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_miscellaneous_831161960
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Arrays
Biochips
computer-aided-design
Design automation
Design engineering
Digital
digital microfluidics (DMFs)
Dilution
dilution of biosamples
Droplets
Electrodes
Layout
Microfluidics
mixing algorithms
Nanostructure
Optimization
Studies
System-on-a-chip
waste minimization
Wastes
title Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Dilution%20and%20Mixing%20of%20Biochemical%20Samples%20Using%20Digital%20Microfluidic%20Biochips&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Roy,%20Sudip&rft.date=2010-11&rft.volume=29&rft.issue=11&rft.spage=1696&rft.epage=1708&rft.pages=1696-1708&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2010.2061790&rft_dat=%3Cproquest_RIE%3E831161960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030143286&rft_id=info:pmid/&rft_ieee_id=5605330&rfr_iscdi=true