Inverse median location problems with variable coordinates
Given n points in with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in becomes the 1-median. The cost is proportional to the increase or decrease of the correspondin...
Gespeichert in:
Veröffentlicht in: | Central European journal of operations research 2010-09, Vol.18 (3), p.365-381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 3 |
container_start_page | 365 |
container_title | Central European journal of operations research |
container_volume | 18 |
creator | Baroughi Bonab, Fahimeh Burkard, Rainer E. Alizadeh, Behrooz |
description | Given
n
points in
with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in
becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is
-hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to
d
continuous knapsack problems and is therefore solvable in
O
(
nd
) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in
O
(
nd
) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is
-hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist. |
doi_str_mv | 10.1007/s10100-009-0114-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_831159924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713158148</galeid><sourcerecordid>A713158148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-2c86cebfd19e9870af5a7fb34af03ed4cb2bbbbffc9e3e31ec7f7fab5297593f3</originalsourceid><addsrcrecordid>eNp1kVFL3TAUx4tMmFM_wN6KL3uxLidpm2ZvIm4Kwl4UfAtpenJvLm2iOa1j3365dKATlkBOEn6_w4F_UXwGdgGMya8ELNeKMVUxgLriB8URtCAqBbL7kO-1aCpet48fi09EO8Y4KNYeFd9uwwsmwnLCwZtQjtGa2cdQPqXYjzhR-cvP2_LFJG_yu7QxpsEHMyOdFIfOjISnf-tx8fD9-v7qprr7-eP26vKusg1Xc8Vt11rs3QAKVSeZcY2Rrhe1cUzgUNue93k5ZxUKFIBWOulMn2XZKOHEcfFl7ZtHel6QZj15sjiOJmBcSHcCoFGK15k8e0fu4pJCHk53dQNStaLL0MUKbcyI2gcX52Rs3gNO3saAzuf_SwkCmg7qvXD-RugX8gEpH-Q325k2ZiH6F4cVtykSJXT6KfnJpN8amN5npdesdM5K77PSPDt8dSizYYPpdfD_S38Aj46XDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>845179638</pqid></control><display><type>article</type><title>Inverse median location problems with variable coordinates</title><source>SpringerLink (Online service)</source><source>Business Source Complete</source><creator>Baroughi Bonab, Fahimeh ; Burkard, Rainer E. ; Alizadeh, Behrooz</creator><creatorcontrib>Baroughi Bonab, Fahimeh ; Burkard, Rainer E. ; Alizadeh, Behrooz</creatorcontrib><description>Given
n
points in
with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in
becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is
-hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to
d
continuous knapsack problems and is therefore solvable in
O
(
nd
) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in
O
(
nd
) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is
-hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist.</description><identifier>ISSN: 1435-246X</identifier><identifier>EISSN: 1613-9178</identifier><identifier>DOI: 10.1007/s10100-009-0114-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Approximation ; Business and Management ; Combinatorial analysis ; Combinatorial optimization ; Graphs ; Inverse ; Inverse problems ; Mathematical analysis ; Mathematical research ; Minimum cost ; Norms ; Operations research ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Weight reduction</subject><ispartof>Central European journal of operations research, 2010-09, Vol.18 (3), p.365-381</ispartof><rights>Springer-Verlag 2009</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-2c86cebfd19e9870af5a7fb34af03ed4cb2bbbbffc9e3e31ec7f7fab5297593f3</citedby><cites>FETCH-LOGICAL-c529t-2c86cebfd19e9870af5a7fb34af03ed4cb2bbbbffc9e3e31ec7f7fab5297593f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10100-009-0114-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10100-009-0114-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Baroughi Bonab, Fahimeh</creatorcontrib><creatorcontrib>Burkard, Rainer E.</creatorcontrib><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><title>Inverse median location problems with variable coordinates</title><title>Central European journal of operations research</title><addtitle>Cent Eur J Oper Res</addtitle><description>Given
n
points in
with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in
becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is
-hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to
d
continuous knapsack problems and is therefore solvable in
O
(
nd
) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in
O
(
nd
) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is
-hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Business and Management</subject><subject>Combinatorial analysis</subject><subject>Combinatorial optimization</subject><subject>Graphs</subject><subject>Inverse</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Minimum cost</subject><subject>Norms</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Weight reduction</subject><issn>1435-246X</issn><issn>1613-9178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kVFL3TAUx4tMmFM_wN6KL3uxLidpm2ZvIm4Kwl4UfAtpenJvLm2iOa1j3365dKATlkBOEn6_w4F_UXwGdgGMya8ELNeKMVUxgLriB8URtCAqBbL7kO-1aCpet48fi09EO8Y4KNYeFd9uwwsmwnLCwZtQjtGa2cdQPqXYjzhR-cvP2_LFJG_yu7QxpsEHMyOdFIfOjISnf-tx8fD9-v7qprr7-eP26vKusg1Xc8Vt11rs3QAKVSeZcY2Rrhe1cUzgUNue93k5ZxUKFIBWOulMn2XZKOHEcfFl7ZtHel6QZj15sjiOJmBcSHcCoFGK15k8e0fu4pJCHk53dQNStaLL0MUKbcyI2gcX52Rs3gNO3saAzuf_SwkCmg7qvXD-RugX8gEpH-Q325k2ZiH6F4cVtykSJXT6KfnJpN8amN5npdesdM5K77PSPDt8dSizYYPpdfD_S38Aj46XDA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Baroughi Bonab, Fahimeh</creator><creator>Burkard, Rainer E.</creator><creator>Alizadeh, Behrooz</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Inverse median location problems with variable coordinates</title><author>Baroughi Bonab, Fahimeh ; Burkard, Rainer E. ; Alizadeh, Behrooz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-2c86cebfd19e9870af5a7fb34af03ed4cb2bbbbffc9e3e31ec7f7fab5297593f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Business and Management</topic><topic>Combinatorial analysis</topic><topic>Combinatorial optimization</topic><topic>Graphs</topic><topic>Inverse</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Minimum cost</topic><topic>Norms</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baroughi Bonab, Fahimeh</creatorcontrib><creatorcontrib>Burkard, Rainer E.</creatorcontrib><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>Central European journal of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baroughi Bonab, Fahimeh</au><au>Burkard, Rainer E.</au><au>Alizadeh, Behrooz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse median location problems with variable coordinates</atitle><jtitle>Central European journal of operations research</jtitle><stitle>Cent Eur J Oper Res</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>18</volume><issue>3</issue><spage>365</spage><epage>381</epage><pages>365-381</pages><issn>1435-246X</issn><eissn>1613-9178</eissn><abstract>Given
n
points in
with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in
becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is
-hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to
d
continuous knapsack problems and is therefore solvable in
O
(
nd
) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in
O
(
nd
) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is
-hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10100-009-0114-2</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-246X |
ispartof | Central European journal of operations research, 2010-09, Vol.18 (3), p.365-381 |
issn | 1435-246X 1613-9178 |
language | eng |
recordid | cdi_proquest_miscellaneous_831159924 |
source | SpringerLink (Online service); Business Source Complete |
subjects | Algorithms Approximation Business and Management Combinatorial analysis Combinatorial optimization Graphs Inverse Inverse problems Mathematical analysis Mathematical research Minimum cost Norms Operations research Operations Research/Decision Theory Optimization Original Paper Weight reduction |
title | Inverse median location problems with variable coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20median%20location%20problems%20with%20variable%20coordinates&rft.jtitle=Central%20European%20journal%20of%20operations%20research&rft.au=Baroughi%20Bonab,%20Fahimeh&rft.date=2010-09-01&rft.volume=18&rft.issue=3&rft.spage=365&rft.epage=381&rft.pages=365-381&rft.issn=1435-246X&rft.eissn=1613-9178&rft_id=info:doi/10.1007/s10100-009-0114-2&rft_dat=%3Cgale_proqu%3EA713158148%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=845179638&rft_id=info:pmid/&rft_galeid=A713158148&rfr_iscdi=true |