Advanced Modulation Schemes for Short-Range Optical Communications
The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equaliz...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2010-09, Vol.16 (5), p.1280-1289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 5 |
container_start_page | 1280 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 16 |
creator | Randel, Sebastian Breyer, Florian Lee, Sian C J Walewski, Joachim W |
description | The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability. |
doi_str_mv | 10.1109/JSTQE.2010.2040808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831157609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5437277</ieee_id><sourcerecordid>831157609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC8BD55SZ7-czbGW-kWlaCt4C9vNRFOSbN1NBP-9qRUPnuYdeN5heKLolMGIMUgvHxbLp-mIQ79zkKBB70UDppROpJJ8v8-AmPAreD2MjkJYA4CWGgbR9Tj_NI2lPH50eVeZtnRNvLDvVFOIC-fjxbvzbfJsmjeK55u2tKaKJ66uu6aPWzocRweFqQKd_M5h9HIzXU7uktn89n4yniVWcGyTFVmWp0KTQSZRpUhGGskFKRAabEqyQCyQWdQEhkmZK5GTYLQSCAoLMYwudnc33n10FNqsLoOlqjINuS5kWjCm8ArSnjz_R65d55v-uYyB5hy1Yrqn-I6y3oXgqcg2vqyN_-qhbGs1-7Gaba1mv1b70tmuVBLRX0FJgRxRfAN7i3Jc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082278518</pqid></control><display><type>article</type><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</creator><creatorcontrib>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</creatorcontrib><description>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2010.2040808</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive modulation ; Channels ; Clipping ; Codes ; Data communication ; digital modulation ; Electronics ; Equalization ; Error analysis ; Intensity modulation ; Links ; Modulation ; Multilevel ; Noise ; Noise reduction ; optical communications ; Optical fiber communication ; Optical modulation ; Optical noise ; Optical pulses ; Probability ; Pulse modulation ; Spectra ; Statistical analysis</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-09, Vol.16 (5), p.1280-1289</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</citedby><cites>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5437277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5437277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Randel, Sebastian</creatorcontrib><creatorcontrib>Breyer, Florian</creatorcontrib><creatorcontrib>Lee, Sian C J</creatorcontrib><creatorcontrib>Walewski, Joachim W</creatorcontrib><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</description><subject>Adaptive modulation</subject><subject>Channels</subject><subject>Clipping</subject><subject>Codes</subject><subject>Data communication</subject><subject>digital modulation</subject><subject>Electronics</subject><subject>Equalization</subject><subject>Error analysis</subject><subject>Intensity modulation</subject><subject>Links</subject><subject>Modulation</subject><subject>Multilevel</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>optical communications</subject><subject>Optical fiber communication</subject><subject>Optical modulation</subject><subject>Optical noise</subject><subject>Optical pulses</subject><subject>Probability</subject><subject>Pulse modulation</subject><subject>Spectra</subject><subject>Statistical analysis</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC8BD55SZ7-czbGW-kWlaCt4C9vNRFOSbN1NBP-9qRUPnuYdeN5heKLolMGIMUgvHxbLp-mIQ79zkKBB70UDppROpJJ8v8-AmPAreD2MjkJYA4CWGgbR9Tj_NI2lPH50eVeZtnRNvLDvVFOIC-fjxbvzbfJsmjeK55u2tKaKJ66uu6aPWzocRweFqQKd_M5h9HIzXU7uktn89n4yniVWcGyTFVmWp0KTQSZRpUhGGskFKRAabEqyQCyQWdQEhkmZK5GTYLQSCAoLMYwudnc33n10FNqsLoOlqjINuS5kWjCm8ArSnjz_R65d55v-uYyB5hy1Yrqn-I6y3oXgqcg2vqyN_-qhbGs1-7Gaba1mv1b70tmuVBLRX0FJgRxRfAN7i3Jc</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Randel, Sebastian</creator><creator>Breyer, Florian</creator><creator>Lee, Sian C J</creator><creator>Walewski, Joachim W</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201009</creationdate><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><author>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive modulation</topic><topic>Channels</topic><topic>Clipping</topic><topic>Codes</topic><topic>Data communication</topic><topic>digital modulation</topic><topic>Electronics</topic><topic>Equalization</topic><topic>Error analysis</topic><topic>Intensity modulation</topic><topic>Links</topic><topic>Modulation</topic><topic>Multilevel</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>optical communications</topic><topic>Optical fiber communication</topic><topic>Optical modulation</topic><topic>Optical noise</topic><topic>Optical pulses</topic><topic>Probability</topic><topic>Pulse modulation</topic><topic>Spectra</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Randel, Sebastian</creatorcontrib><creatorcontrib>Breyer, Florian</creatorcontrib><creatorcontrib>Lee, Sian C J</creatorcontrib><creatorcontrib>Walewski, Joachim W</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Randel, Sebastian</au><au>Breyer, Florian</au><au>Lee, Sian C J</au><au>Walewski, Joachim W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Modulation Schemes for Short-Range Optical Communications</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-09</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>1280</spage><epage>1289</epage><pages>1280-1289</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2010.2040808</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2010-09, Vol.16 (5), p.1280-1289 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_miscellaneous_831157609 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive modulation Channels Clipping Codes Data communication digital modulation Electronics Equalization Error analysis Intensity modulation Links Modulation Multilevel Noise Noise reduction optical communications Optical fiber communication Optical modulation Optical noise Optical pulses Probability Pulse modulation Spectra Statistical analysis |
title | Advanced Modulation Schemes for Short-Range Optical Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Modulation%20Schemes%20for%20Short-Range%20Optical%20Communications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Randel,%20Sebastian&rft.date=2010-09&rft.volume=16&rft.issue=5&rft.spage=1280&rft.epage=1289&rft.pages=1280-1289&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2010.2040808&rft_dat=%3Cproquest_RIE%3E831157609%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082278518&rft_id=info:pmid/&rft_ieee_id=5437277&rfr_iscdi=true |