Advanced Modulation Schemes for Short-Range Optical Communications

The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equaliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2010-09, Vol.16 (5), p.1280-1289
Hauptverfasser: Randel, Sebastian, Breyer, Florian, Lee, Sian C J, Walewski, Joachim W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 5
container_start_page 1280
container_title IEEE journal of selected topics in quantum electronics
container_volume 16
creator Randel, Sebastian
Breyer, Florian
Lee, Sian C J
Walewski, Joachim W
description The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.
doi_str_mv 10.1109/JSTQE.2010.2040808
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_831157609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5437277</ieee_id><sourcerecordid>831157609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC8BD55SZ7-czbGW-kWlaCt4C9vNRFOSbN1NBP-9qRUPnuYdeN5heKLolMGIMUgvHxbLp-mIQ79zkKBB70UDppROpJJ8v8-AmPAreD2MjkJYA4CWGgbR9Tj_NI2lPH50eVeZtnRNvLDvVFOIC-fjxbvzbfJsmjeK55u2tKaKJ66uu6aPWzocRweFqQKd_M5h9HIzXU7uktn89n4yniVWcGyTFVmWp0KTQSZRpUhGGskFKRAabEqyQCyQWdQEhkmZK5GTYLQSCAoLMYwudnc33n10FNqsLoOlqjINuS5kWjCm8ArSnjz_R65d55v-uYyB5hy1Yrqn-I6y3oXgqcg2vqyN_-qhbGs1-7Gaba1mv1b70tmuVBLRX0FJgRxRfAN7i3Jc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082278518</pqid></control><display><type>article</type><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</creator><creatorcontrib>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</creatorcontrib><description>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2010.2040808</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive modulation ; Channels ; Clipping ; Codes ; Data communication ; digital modulation ; Electronics ; Equalization ; Error analysis ; Intensity modulation ; Links ; Modulation ; Multilevel ; Noise ; Noise reduction ; optical communications ; Optical fiber communication ; Optical modulation ; Optical noise ; Optical pulses ; Probability ; Pulse modulation ; Spectra ; Statistical analysis</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-09, Vol.16 (5), p.1280-1289</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</citedby><cites>FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5437277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5437277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Randel, Sebastian</creatorcontrib><creatorcontrib>Breyer, Florian</creatorcontrib><creatorcontrib>Lee, Sian C J</creatorcontrib><creatorcontrib>Walewski, Joachim W</creatorcontrib><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</description><subject>Adaptive modulation</subject><subject>Channels</subject><subject>Clipping</subject><subject>Codes</subject><subject>Data communication</subject><subject>digital modulation</subject><subject>Electronics</subject><subject>Equalization</subject><subject>Error analysis</subject><subject>Intensity modulation</subject><subject>Links</subject><subject>Modulation</subject><subject>Multilevel</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>optical communications</subject><subject>Optical fiber communication</subject><subject>Optical modulation</subject><subject>Optical noise</subject><subject>Optical pulses</subject><subject>Probability</subject><subject>Pulse modulation</subject><subject>Spectra</subject><subject>Statistical analysis</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC8BD55SZ7-czbGW-kWlaCt4C9vNRFOSbN1NBP-9qRUPnuYdeN5heKLolMGIMUgvHxbLp-mIQ79zkKBB70UDppROpJJ8v8-AmPAreD2MjkJYA4CWGgbR9Tj_NI2lPH50eVeZtnRNvLDvVFOIC-fjxbvzbfJsmjeK55u2tKaKJ66uu6aPWzocRweFqQKd_M5h9HIzXU7uktn89n4yniVWcGyTFVmWp0KTQSZRpUhGGskFKRAabEqyQCyQWdQEhkmZK5GTYLQSCAoLMYwudnc33n10FNqsLoOlqjINuS5kWjCm8ArSnjz_R65d55v-uYyB5hy1Yrqn-I6y3oXgqcg2vqyN_-qhbGs1-7Gaba1mv1b70tmuVBLRX0FJgRxRfAN7i3Jc</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Randel, Sebastian</creator><creator>Breyer, Florian</creator><creator>Lee, Sian C J</creator><creator>Walewski, Joachim W</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201009</creationdate><title>Advanced Modulation Schemes for Short-Range Optical Communications</title><author>Randel, Sebastian ; Breyer, Florian ; Lee, Sian C J ; Walewski, Joachim W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-bec1d938ea7147597ea4a423e50380c9e4f77f71c78e0a144d53de31eb37057f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive modulation</topic><topic>Channels</topic><topic>Clipping</topic><topic>Codes</topic><topic>Data communication</topic><topic>digital modulation</topic><topic>Electronics</topic><topic>Equalization</topic><topic>Error analysis</topic><topic>Intensity modulation</topic><topic>Links</topic><topic>Modulation</topic><topic>Multilevel</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>optical communications</topic><topic>Optical fiber communication</topic><topic>Optical modulation</topic><topic>Optical noise</topic><topic>Optical pulses</topic><topic>Probability</topic><topic>Pulse modulation</topic><topic>Spectra</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Randel, Sebastian</creatorcontrib><creatorcontrib>Breyer, Florian</creatorcontrib><creatorcontrib>Lee, Sian C J</creatorcontrib><creatorcontrib>Walewski, Joachim W</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Randel, Sebastian</au><au>Breyer, Florian</au><au>Lee, Sian C J</au><au>Walewski, Joachim W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Modulation Schemes for Short-Range Optical Communications</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-09</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>1280</spage><epage>1289</epage><pages>1280-1289</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The performance of advanced modulation schemes for spectrally efficient data transmission is reviewed, targeting short-range intensity-modulated optical channels with direct detection. Hereby, the focus lies on the performance of multilevel pulse-amplitude modulation combined with electronic equalization and, as an alternative modulation scheme, discrete multitone. A comprehensive statistical analysis of clipping noise is presented and exact expressions for the performance of symmetrically clipped discrete multitone are derived. It is shown that the clipping noise is impulsive and obeys a generalized Laplace distribution. The bit-error probability due to clipping is studied in detail, and it is found that the impact of clipping noise is reduced for an increasing number of subchannels. Finally, the optical link margins of multilevel pulse-amplitude modulation in combination with electronic equalization and that of discrete multitone in combination with margin-adaptive bit loading are compared. It is found that even symmetrically clipped discrete multitone suffers from its large crest factor in the peak-power-limited channel and that, in many instances, pulse-amplitude modulation provides higher link margins for the same target bit-error probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2010.2040808</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2010-09, Vol.16 (5), p.1280-1289
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_miscellaneous_831157609
source IEEE Electronic Library (IEL)
subjects Adaptive modulation
Channels
Clipping
Codes
Data communication
digital modulation
Electronics
Equalization
Error analysis
Intensity modulation
Links
Modulation
Multilevel
Noise
Noise reduction
optical communications
Optical fiber communication
Optical modulation
Optical noise
Optical pulses
Probability
Pulse modulation
Spectra
Statistical analysis
title Advanced Modulation Schemes for Short-Range Optical Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Modulation%20Schemes%20for%20Short-Range%20Optical%20Communications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Randel,%20Sebastian&rft.date=2010-09&rft.volume=16&rft.issue=5&rft.spage=1280&rft.epage=1289&rft.pages=1280-1289&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2010.2040808&rft_dat=%3Cproquest_RIE%3E831157609%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082278518&rft_id=info:pmid/&rft_ieee_id=5437277&rfr_iscdi=true