Distributed Learning in Multi-Armed Bandit With Multiple Players

We formulate and study a decentralized multi-armed bandit (MAB) problem. There are M distributed players competing for N independent arms. Each arm, when played, offers i.i.d. reward according to a distribution with an unknown parameter. At each time, each player chooses one arm to play without exch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-11, Vol.58 (11), p.5667-5681
Hauptverfasser: Liu, Keqin, Zhao, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!