Slow phase hemolysis in hypotonic electrolyte solutions

When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Cell. Physiol.; (United States) 1975-02, Vol.85 (1), p.47-57
Hauptverfasser: Chan, T. K., Lacelle, P. L., Weed, R. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 47
container_title J. Cell. Physiol.; (United States)
container_volume 85
creator Chan, T. K.
Lacelle, P. L.
Weed, R. I.
description When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis. Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky. Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.
doi_str_mv 10.1002/jcp.1040850107
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_82762785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>82762785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</originalsourceid><addsrcrecordid>eNqFkE1r20AURYfQ4jhpt9kVRBfZKXnzLS1bN3EaTGKoqZeDNHrCk8gaVSOT-N9ngkxNV13Ng3vuZTiEXFC4ogDs-sl28RCQSaCgT8iUQq5ToST7QKYRoGkuBT0lZyE8AUCecz4hE0opMEWnRP9q_EvSbYqAyQa3vtkHFxLXJpt95wffOptgg3boYzJgEnyzG5xvwyfysS6agJ8P7zlZ3d6sZnfp4nH-c_ZtkVoBUqdci8oKhkJVdWUV1jUqbbEUjFutgWd1XSCUtcxUYQEzywVQKVGWZc6x4ufk6zjrw-BMsG5Au7G-beOXjGZUSa0jdDlCXe__7DAMZuuCxaYpWvS7YDKmFdOZjODVCNreh9BjbbrebYt-byiYd5sm2jRHm7Hw5bC8K7dYHfFRX8zzMX9xDe7_s2buZ8t_ttOx68KAr3-7Rf9slOZamvXD3CyWc_Z7_WNhvvM3sLSQQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>82762785</pqid></control><display><type>article</type><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I.</creator><creatorcontrib>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I. ; Univ. of Rochester, NY</creatorcontrib><description>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis. Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky. Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1040850107</identifier><identifier>PMID: 1110261</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>550200 - Biochemistry ; ALKALI METALS ; BASIC BIOLOGICAL SCIENCES ; BIOLOGICAL EFFECTS ; BIOLOGICAL MATERIALS ; BLOOD ; BLOOD CELLS ; BODY FLUIDS ; CARBOHYDRATES ; CARDIOTONICS ; CELL CONSTITUENTS ; Cell Membrane - ultrastructure ; CELL MEMBRANES ; Chlorides ; DISACCHARIDES ; DISEASES ; DISPERSIONS ; DRUGS ; ELECTROLYTES ; ELEMENTS ; ERYTHROCYTES ; Erythrocytes - metabolism ; Erythrocytes - ultrastructure ; GLYCOSIDES ; Hemoglobins - metabolism ; HEMOLYSIS ; Humans ; Hypotonic Solutions ; Inositol ; Isotonic Solutions ; LYSIS ; Magnesium ; MEMBRANES ; METALS ; Microscopy, Electron, Scanning ; MIXTURES ; Models, Biological ; OLIGOSACCHARIDES ; ORGANIC COMPOUNDS ; Osmotic Fragility ; OUABAIN ; Ouabain - pharmacology ; PATHOLOGICAL CHANGES ; POTASSIUM ; Potassium - metabolism ; Radioisotopes ; SACCHARIDES ; SACCHAROSE ; SODIUM ; Sodium - metabolism ; Sodium Chloride ; Sodium Isotopes ; SOLUTIONS ; STEROIDS ; STROPHANTIN ; Sucrose ; Time Factors</subject><ispartof>J. Cell. Physiol.; (United States), 1975-02, Vol.85 (1), p.47-57</ispartof><rights>Copyright © 1975 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</citedby><cites>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1040850107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1040850107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1110261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7216577$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, T. K.</creatorcontrib><creatorcontrib>Lacelle, P. L.</creatorcontrib><creatorcontrib>Weed, R. I.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY</creatorcontrib><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><title>J. Cell. Physiol.; (United States)</title><addtitle>J. Cell. Physiol</addtitle><description>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis. Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky. Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</description><subject>550200 - Biochemistry</subject><subject>ALKALI METALS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BIOLOGICAL MATERIALS</subject><subject>BLOOD</subject><subject>BLOOD CELLS</subject><subject>BODY FLUIDS</subject><subject>CARBOHYDRATES</subject><subject>CARDIOTONICS</subject><subject>CELL CONSTITUENTS</subject><subject>Cell Membrane - ultrastructure</subject><subject>CELL MEMBRANES</subject><subject>Chlorides</subject><subject>DISACCHARIDES</subject><subject>DISEASES</subject><subject>DISPERSIONS</subject><subject>DRUGS</subject><subject>ELECTROLYTES</subject><subject>ELEMENTS</subject><subject>ERYTHROCYTES</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - ultrastructure</subject><subject>GLYCOSIDES</subject><subject>Hemoglobins - metabolism</subject><subject>HEMOLYSIS</subject><subject>Humans</subject><subject>Hypotonic Solutions</subject><subject>Inositol</subject><subject>Isotonic Solutions</subject><subject>LYSIS</subject><subject>Magnesium</subject><subject>MEMBRANES</subject><subject>METALS</subject><subject>Microscopy, Electron, Scanning</subject><subject>MIXTURES</subject><subject>Models, Biological</subject><subject>OLIGOSACCHARIDES</subject><subject>ORGANIC COMPOUNDS</subject><subject>Osmotic Fragility</subject><subject>OUABAIN</subject><subject>Ouabain - pharmacology</subject><subject>PATHOLOGICAL CHANGES</subject><subject>POTASSIUM</subject><subject>Potassium - metabolism</subject><subject>Radioisotopes</subject><subject>SACCHARIDES</subject><subject>SACCHAROSE</subject><subject>SODIUM</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride</subject><subject>Sodium Isotopes</subject><subject>SOLUTIONS</subject><subject>STEROIDS</subject><subject>STROPHANTIN</subject><subject>Sucrose</subject><subject>Time Factors</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r20AURYfQ4jhpt9kVRBfZKXnzLS1bN3EaTGKoqZeDNHrCk8gaVSOT-N9ngkxNV13Ng3vuZTiEXFC4ogDs-sl28RCQSaCgT8iUQq5ToST7QKYRoGkuBT0lZyE8AUCecz4hE0opMEWnRP9q_EvSbYqAyQa3vtkHFxLXJpt95wffOptgg3boYzJgEnyzG5xvwyfysS6agJ8P7zlZ3d6sZnfp4nH-c_ZtkVoBUqdci8oKhkJVdWUV1jUqbbEUjFutgWd1XSCUtcxUYQEzywVQKVGWZc6x4ufk6zjrw-BMsG5Au7G-beOXjGZUSa0jdDlCXe__7DAMZuuCxaYpWvS7YDKmFdOZjODVCNreh9BjbbrebYt-byiYd5sm2jRHm7Hw5bC8K7dYHfFRX8zzMX9xDe7_s2buZ8t_ttOx68KAr3-7Rf9slOZamvXD3CyWc_Z7_WNhvvM3sLSQQg</recordid><startdate>197502</startdate><enddate>197502</enddate><creator>Chan, T. K.</creator><creator>Lacelle, P. L.</creator><creator>Weed, R. I.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>197502</creationdate><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><author>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>550200 - Biochemistry</topic><topic>ALKALI METALS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BIOLOGICAL MATERIALS</topic><topic>BLOOD</topic><topic>BLOOD CELLS</topic><topic>BODY FLUIDS</topic><topic>CARBOHYDRATES</topic><topic>CARDIOTONICS</topic><topic>CELL CONSTITUENTS</topic><topic>Cell Membrane - ultrastructure</topic><topic>CELL MEMBRANES</topic><topic>Chlorides</topic><topic>DISACCHARIDES</topic><topic>DISEASES</topic><topic>DISPERSIONS</topic><topic>DRUGS</topic><topic>ELECTROLYTES</topic><topic>ELEMENTS</topic><topic>ERYTHROCYTES</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - ultrastructure</topic><topic>GLYCOSIDES</topic><topic>Hemoglobins - metabolism</topic><topic>HEMOLYSIS</topic><topic>Humans</topic><topic>Hypotonic Solutions</topic><topic>Inositol</topic><topic>Isotonic Solutions</topic><topic>LYSIS</topic><topic>Magnesium</topic><topic>MEMBRANES</topic><topic>METALS</topic><topic>Microscopy, Electron, Scanning</topic><topic>MIXTURES</topic><topic>Models, Biological</topic><topic>OLIGOSACCHARIDES</topic><topic>ORGANIC COMPOUNDS</topic><topic>Osmotic Fragility</topic><topic>OUABAIN</topic><topic>Ouabain - pharmacology</topic><topic>PATHOLOGICAL CHANGES</topic><topic>POTASSIUM</topic><topic>Potassium - metabolism</topic><topic>Radioisotopes</topic><topic>SACCHARIDES</topic><topic>SACCHAROSE</topic><topic>SODIUM</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride</topic><topic>Sodium Isotopes</topic><topic>SOLUTIONS</topic><topic>STEROIDS</topic><topic>STROPHANTIN</topic><topic>Sucrose</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, T. K.</creatorcontrib><creatorcontrib>Lacelle, P. L.</creatorcontrib><creatorcontrib>Weed, R. I.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Cell. Physiol.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, T. K.</au><au>Lacelle, P. L.</au><au>Weed, R. I.</au><aucorp>Univ. of Rochester, NY</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow phase hemolysis in hypotonic electrolyte solutions</atitle><jtitle>J. Cell. Physiol.; (United States)</jtitle><addtitle>J. Cell. Physiol</addtitle><date>1975-02</date><risdate>1975</risdate><volume>85</volume><issue>1</issue><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis. Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky. Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>1110261</pmid><doi>10.1002/jcp.1040850107</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof J. Cell. Physiol.; (United States), 1975-02, Vol.85 (1), p.47-57
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_82762785
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 550200 - Biochemistry
ALKALI METALS
BASIC BIOLOGICAL SCIENCES
BIOLOGICAL EFFECTS
BIOLOGICAL MATERIALS
BLOOD
BLOOD CELLS
BODY FLUIDS
CARBOHYDRATES
CARDIOTONICS
CELL CONSTITUENTS
Cell Membrane - ultrastructure
CELL MEMBRANES
Chlorides
DISACCHARIDES
DISEASES
DISPERSIONS
DRUGS
ELECTROLYTES
ELEMENTS
ERYTHROCYTES
Erythrocytes - metabolism
Erythrocytes - ultrastructure
GLYCOSIDES
Hemoglobins - metabolism
HEMOLYSIS
Humans
Hypotonic Solutions
Inositol
Isotonic Solutions
LYSIS
Magnesium
MEMBRANES
METALS
Microscopy, Electron, Scanning
MIXTURES
Models, Biological
OLIGOSACCHARIDES
ORGANIC COMPOUNDS
Osmotic Fragility
OUABAIN
Ouabain - pharmacology
PATHOLOGICAL CHANGES
POTASSIUM
Potassium - metabolism
Radioisotopes
SACCHARIDES
SACCHAROSE
SODIUM
Sodium - metabolism
Sodium Chloride
Sodium Isotopes
SOLUTIONS
STEROIDS
STROPHANTIN
Sucrose
Time Factors
title Slow phase hemolysis in hypotonic electrolyte solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20phase%20hemolysis%20in%20hypotonic%20electrolyte%20solutions&rft.jtitle=J.%20Cell.%20Physiol.;%20(United%20States)&rft.au=Chan,%20T.%20K.&rft.aucorp=Univ.%20of%20Rochester,%20NY&rft.date=1975-02&rft.volume=85&rft.issue=1&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1040850107&rft_dat=%3Cproquest_osti_%3E82762785%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=82762785&rft_id=info:pmid/1110261&rfr_iscdi=true