Slow phase hemolysis in hypotonic electrolyte solutions
When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility o...
Gespeichert in:
Veröffentlicht in: | J. Cell. Physiol.; (United States) 1975-02, Vol.85 (1), p.47-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | J. Cell. Physiol.; (United States) |
container_volume | 85 |
creator | Chan, T. K. Lacelle, P. L. Weed, R. I. |
description | When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis.
Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky.
Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters. |
doi_str_mv | 10.1002/jcp.1040850107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_82762785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>82762785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</originalsourceid><addsrcrecordid>eNqFkE1r20AURYfQ4jhpt9kVRBfZKXnzLS1bN3EaTGKoqZeDNHrCk8gaVSOT-N9ngkxNV13Ng3vuZTiEXFC4ogDs-sl28RCQSaCgT8iUQq5ToST7QKYRoGkuBT0lZyE8AUCecz4hE0opMEWnRP9q_EvSbYqAyQa3vtkHFxLXJpt95wffOptgg3boYzJgEnyzG5xvwyfysS6agJ8P7zlZ3d6sZnfp4nH-c_ZtkVoBUqdci8oKhkJVdWUV1jUqbbEUjFutgWd1XSCUtcxUYQEzywVQKVGWZc6x4ufk6zjrw-BMsG5Au7G-beOXjGZUSa0jdDlCXe__7DAMZuuCxaYpWvS7YDKmFdOZjODVCNreh9BjbbrebYt-byiYd5sm2jRHm7Hw5bC8K7dYHfFRX8zzMX9xDe7_s2buZ8t_ttOx68KAr3-7Rf9slOZamvXD3CyWc_Z7_WNhvvM3sLSQQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>82762785</pqid></control><display><type>article</type><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I.</creator><creatorcontrib>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I. ; Univ. of Rochester, NY</creatorcontrib><description>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis.
Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky.
Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1040850107</identifier><identifier>PMID: 1110261</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>550200 - Biochemistry ; ALKALI METALS ; BASIC BIOLOGICAL SCIENCES ; BIOLOGICAL EFFECTS ; BIOLOGICAL MATERIALS ; BLOOD ; BLOOD CELLS ; BODY FLUIDS ; CARBOHYDRATES ; CARDIOTONICS ; CELL CONSTITUENTS ; Cell Membrane - ultrastructure ; CELL MEMBRANES ; Chlorides ; DISACCHARIDES ; DISEASES ; DISPERSIONS ; DRUGS ; ELECTROLYTES ; ELEMENTS ; ERYTHROCYTES ; Erythrocytes - metabolism ; Erythrocytes - ultrastructure ; GLYCOSIDES ; Hemoglobins - metabolism ; HEMOLYSIS ; Humans ; Hypotonic Solutions ; Inositol ; Isotonic Solutions ; LYSIS ; Magnesium ; MEMBRANES ; METALS ; Microscopy, Electron, Scanning ; MIXTURES ; Models, Biological ; OLIGOSACCHARIDES ; ORGANIC COMPOUNDS ; Osmotic Fragility ; OUABAIN ; Ouabain - pharmacology ; PATHOLOGICAL CHANGES ; POTASSIUM ; Potassium - metabolism ; Radioisotopes ; SACCHARIDES ; SACCHAROSE ; SODIUM ; Sodium - metabolism ; Sodium Chloride ; Sodium Isotopes ; SOLUTIONS ; STEROIDS ; STROPHANTIN ; Sucrose ; Time Factors</subject><ispartof>J. Cell. Physiol.; (United States), 1975-02, Vol.85 (1), p.47-57</ispartof><rights>Copyright © 1975 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</citedby><cites>FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1040850107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1040850107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1110261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7216577$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, T. K.</creatorcontrib><creatorcontrib>Lacelle, P. L.</creatorcontrib><creatorcontrib>Weed, R. I.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY</creatorcontrib><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><title>J. Cell. Physiol.; (United States)</title><addtitle>J. Cell. Physiol</addtitle><description>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis.
Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky.
Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</description><subject>550200 - Biochemistry</subject><subject>ALKALI METALS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BIOLOGICAL MATERIALS</subject><subject>BLOOD</subject><subject>BLOOD CELLS</subject><subject>BODY FLUIDS</subject><subject>CARBOHYDRATES</subject><subject>CARDIOTONICS</subject><subject>CELL CONSTITUENTS</subject><subject>Cell Membrane - ultrastructure</subject><subject>CELL MEMBRANES</subject><subject>Chlorides</subject><subject>DISACCHARIDES</subject><subject>DISEASES</subject><subject>DISPERSIONS</subject><subject>DRUGS</subject><subject>ELECTROLYTES</subject><subject>ELEMENTS</subject><subject>ERYTHROCYTES</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - ultrastructure</subject><subject>GLYCOSIDES</subject><subject>Hemoglobins - metabolism</subject><subject>HEMOLYSIS</subject><subject>Humans</subject><subject>Hypotonic Solutions</subject><subject>Inositol</subject><subject>Isotonic Solutions</subject><subject>LYSIS</subject><subject>Magnesium</subject><subject>MEMBRANES</subject><subject>METALS</subject><subject>Microscopy, Electron, Scanning</subject><subject>MIXTURES</subject><subject>Models, Biological</subject><subject>OLIGOSACCHARIDES</subject><subject>ORGANIC COMPOUNDS</subject><subject>Osmotic Fragility</subject><subject>OUABAIN</subject><subject>Ouabain - pharmacology</subject><subject>PATHOLOGICAL CHANGES</subject><subject>POTASSIUM</subject><subject>Potassium - metabolism</subject><subject>Radioisotopes</subject><subject>SACCHARIDES</subject><subject>SACCHAROSE</subject><subject>SODIUM</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride</subject><subject>Sodium Isotopes</subject><subject>SOLUTIONS</subject><subject>STEROIDS</subject><subject>STROPHANTIN</subject><subject>Sucrose</subject><subject>Time Factors</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r20AURYfQ4jhpt9kVRBfZKXnzLS1bN3EaTGKoqZeDNHrCk8gaVSOT-N9ngkxNV13Ng3vuZTiEXFC4ogDs-sl28RCQSaCgT8iUQq5ToST7QKYRoGkuBT0lZyE8AUCecz4hE0opMEWnRP9q_EvSbYqAyQa3vtkHFxLXJpt95wffOptgg3boYzJgEnyzG5xvwyfysS6agJ8P7zlZ3d6sZnfp4nH-c_ZtkVoBUqdci8oKhkJVdWUV1jUqbbEUjFutgWd1XSCUtcxUYQEzywVQKVGWZc6x4ufk6zjrw-BMsG5Au7G-beOXjGZUSa0jdDlCXe__7DAMZuuCxaYpWvS7YDKmFdOZjODVCNreh9BjbbrebYt-byiYd5sm2jRHm7Hw5bC8K7dYHfFRX8zzMX9xDe7_s2buZ8t_ttOx68KAr3-7Rf9slOZamvXD3CyWc_Z7_WNhvvM3sLSQQg</recordid><startdate>197502</startdate><enddate>197502</enddate><creator>Chan, T. K.</creator><creator>Lacelle, P. L.</creator><creator>Weed, R. I.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>197502</creationdate><title>Slow phase hemolysis in hypotonic electrolyte solutions</title><author>Chan, T. K. ; Lacelle, P. L. ; Weed, R. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-374dc42e46dfdc6effe67ceb423c77038ffae0bf586ac0e8c340155e5bb93ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>550200 - Biochemistry</topic><topic>ALKALI METALS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BIOLOGICAL MATERIALS</topic><topic>BLOOD</topic><topic>BLOOD CELLS</topic><topic>BODY FLUIDS</topic><topic>CARBOHYDRATES</topic><topic>CARDIOTONICS</topic><topic>CELL CONSTITUENTS</topic><topic>Cell Membrane - ultrastructure</topic><topic>CELL MEMBRANES</topic><topic>Chlorides</topic><topic>DISACCHARIDES</topic><topic>DISEASES</topic><topic>DISPERSIONS</topic><topic>DRUGS</topic><topic>ELECTROLYTES</topic><topic>ELEMENTS</topic><topic>ERYTHROCYTES</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - ultrastructure</topic><topic>GLYCOSIDES</topic><topic>Hemoglobins - metabolism</topic><topic>HEMOLYSIS</topic><topic>Humans</topic><topic>Hypotonic Solutions</topic><topic>Inositol</topic><topic>Isotonic Solutions</topic><topic>LYSIS</topic><topic>Magnesium</topic><topic>MEMBRANES</topic><topic>METALS</topic><topic>Microscopy, Electron, Scanning</topic><topic>MIXTURES</topic><topic>Models, Biological</topic><topic>OLIGOSACCHARIDES</topic><topic>ORGANIC COMPOUNDS</topic><topic>Osmotic Fragility</topic><topic>OUABAIN</topic><topic>Ouabain - pharmacology</topic><topic>PATHOLOGICAL CHANGES</topic><topic>POTASSIUM</topic><topic>Potassium - metabolism</topic><topic>Radioisotopes</topic><topic>SACCHARIDES</topic><topic>SACCHAROSE</topic><topic>SODIUM</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride</topic><topic>Sodium Isotopes</topic><topic>SOLUTIONS</topic><topic>STEROIDS</topic><topic>STROPHANTIN</topic><topic>Sucrose</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, T. K.</creatorcontrib><creatorcontrib>Lacelle, P. L.</creatorcontrib><creatorcontrib>Weed, R. I.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Cell. Physiol.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, T. K.</au><au>Lacelle, P. L.</au><au>Weed, R. I.</au><aucorp>Univ. of Rochester, NY</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow phase hemolysis in hypotonic electrolyte solutions</atitle><jtitle>J. Cell. Physiol.; (United States)</jtitle><addtitle>J. Cell. Physiol</addtitle><date>1975-02</date><risdate>1975</risdate><volume>85</volume><issue>1</issue><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>When a population of erythrocytes is partially hemolyzed the time course of hemolysis can be divided into a fast phase and a slow phase. The slow phase occurs with both rapid and gradual addition of the hypotonic medium (rapid and gradual hemolysis). There is no difference in the osmotic fragility of erythrocytes remaining at 60 minutes after rapid or gradual hemolysis.
Erythrocytes near their critical hemolytic volume have an equimolar ouabain‐insensitive sodium‐potassium exchange. Critical non‐hemolytic swelling with resulting stress on the membrane appears requisite to slow phase hemolysis since more non‐penetrant sucrose is required to prevent slow phase lysis rather than that which would be predicted from the intracellular colloid osmotic pressure due to hemoglobin. Sucrose protection from slow phase hemolysis thus depends not only on counter‐balancing the colloid osmotic pressure, but also removal of sufficient intracellular water to prevent critical membrane strain. This model is consistent with that proposed by Katchalsky.
Irreversible membrane changes associated with hypotonic stress manifested by persistent stomatocytic shape change and membrane wrinkling on return of cells to isotonicity appear to be due to critical changes in membrane components. Such cells, having normal indices and specific gravity are less deformable than control cells in 2.8 μm pore size polycarbonate filters.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>1110261</pmid><doi>10.1002/jcp.1040850107</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | J. Cell. Physiol.; (United States), 1975-02, Vol.85 (1), p.47-57 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_82762785 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 550200 - Biochemistry ALKALI METALS BASIC BIOLOGICAL SCIENCES BIOLOGICAL EFFECTS BIOLOGICAL MATERIALS BLOOD BLOOD CELLS BODY FLUIDS CARBOHYDRATES CARDIOTONICS CELL CONSTITUENTS Cell Membrane - ultrastructure CELL MEMBRANES Chlorides DISACCHARIDES DISEASES DISPERSIONS DRUGS ELECTROLYTES ELEMENTS ERYTHROCYTES Erythrocytes - metabolism Erythrocytes - ultrastructure GLYCOSIDES Hemoglobins - metabolism HEMOLYSIS Humans Hypotonic Solutions Inositol Isotonic Solutions LYSIS Magnesium MEMBRANES METALS Microscopy, Electron, Scanning MIXTURES Models, Biological OLIGOSACCHARIDES ORGANIC COMPOUNDS Osmotic Fragility OUABAIN Ouabain - pharmacology PATHOLOGICAL CHANGES POTASSIUM Potassium - metabolism Radioisotopes SACCHARIDES SACCHAROSE SODIUM Sodium - metabolism Sodium Chloride Sodium Isotopes SOLUTIONS STEROIDS STROPHANTIN Sucrose Time Factors |
title | Slow phase hemolysis in hypotonic electrolyte solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20phase%20hemolysis%20in%20hypotonic%20electrolyte%20solutions&rft.jtitle=J.%20Cell.%20Physiol.;%20(United%20States)&rft.au=Chan,%20T.%20K.&rft.aucorp=Univ.%20of%20Rochester,%20NY&rft.date=1975-02&rft.volume=85&rft.issue=1&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1040850107&rft_dat=%3Cproquest_osti_%3E82762785%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=82762785&rft_id=info:pmid/1110261&rfr_iscdi=true |