Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor
The present series of experiments was undertaken to develop an understanding of the function of the abdominal rotation response (ARR) in Tenebrio molitor pupae. This response, which composes virtually the entire observable behavioral repertoire of the pupae, can be described as a relatively vigorous...
Gespeichert in:
Veröffentlicht in: | Behaviour 1974, Vol.50 (1-2), p.152-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 1-2 |
container_start_page | 152 |
container_title | Behaviour |
container_volume | 50 |
creator | Askew, Henry R Kurtz, Perry J |
description | The present series of experiments was undertaken to develop an understanding of the function of the abdominal rotation response (ARR) in Tenebrio molitor pupae. This response, which composes virtually the entire observable behavioral repertoire of the pupae, can be described as a relatively vigorous circular rotation of the abdominal segments elicited by tactile or electrical stimulation. The experimental strategy employed involved collecting evidence that appeared relevant either directly or indirectly to several "possible" functions derived from an a priori consideration of what little was known of the behavior. Improved functional hypotheses, rather than conclusive proof, was the overall aim. Experiments 1 and 2 focused on the possible utility of the ARR as an escape response. A rapid series of ARRs resulting in locomotion were elicited by administering a potentially lethal heat/light stimulus. There was a tendency for the pupae to move away from (as opposed to toward) the direction of the source of stimulation. Experiment 3 investigated the effect of shock stimulus intensity on habituation of the ARR. Increased intensity resulted in a greater probability of eliciting ARRs, more vigorous ARRs, and less rapid habituation. Experiment 4 examined the speed of recovery from habituation to a repeated tactile stimulus. Results showed that recovery followed a negatively accelerated increasing function with approximately 50 percent recovery occurring within 15 min, and almost complete recovery by 2 hr following the termination of stimulation. Experiment 5 compared tactile stimulus habituation for 10 independent groups of pupae differing in developmental age. Young pupae (days 1 & 2) and old pupae (days 9 & 10) showed little habituation. Mid-phase animals (days 5 & 6) habituated most readily. Experiment 6 employed six newly pupated subjects (day 1) mounted in such a way that "spontaneous" ARRs could be continuously recorded (via a photocell system) throughout the entire pupal stage. All animals made spontaneous ARRs. The data were bimodal with most of the responses observed early (days 1 & 2) and late (days 8, 9 & 10) in the stage. In Experiment 7 new pupae (day 1) were positioned on a point drawn on a paper surface. Animals were checked on each day of development and the distance moved across the surface was recorded. Results indicated that animals were quite active (minimum of 40 percent showing movement on any day), and that the fluctuation in this activity, a |
doi_str_mv | 10.1163/156853974X00084 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_82558147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4533604</jstor_id><sourcerecordid>4533604</sourcerecordid><originalsourceid>FETCH-LOGICAL-b483t-c6d0864736a170403811f34953a2124370c631944dae4da7197b21beedc29b423</originalsourceid><addsrcrecordid>eNp1kMtrGzEQxkVoSR0n514aWAj0to1Gz91jcOq-XBIcl-QmtLtjIne9cqRdSP_7yrFJSqAHIWa-37w-Qt4D_QSg-DlIVUheanFHKS3EARltM3lK3b0ho5STuS5l-Y4cxbhKoZZcHpJDIRiA1iNye9MPjcOYXXVZf4_ZdOjq3vku88un-KJq_Np1ts3mvrdPyhzjxncRM9dl18PG4pZdYIdVcD776VvX-3BM3i5tG_Fk_4_Jr-nnxeRrPrv68m1yMcsrUfA-r1VDCyU0VxY0FZQXAEsuSsktAya4prXiUArRWExPQ6krBhViU7OyEoyPycdd303wDwPG3qxdrLFtbYd-iKZgUhaQBozJ2Stw5YeQDosGeJrLlJaQqPMdVQcfY8Cl2QS3tuGPAWq2hptXhqeK033foVpj88zvHU76h52-ismWF1lyrui2PN_JLvb4-Czb8NsozbU0338sDLudzBezyxszfeGT2W37zw3_We8vAo-eag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303826751</pqid></control><display><type>article</type><title>Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor</title><source>MEDLINE</source><source>Periodicals Index Online</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Askew, Henry R ; Kurtz, Perry J</creator><creatorcontrib>Askew, Henry R ; Kurtz, Perry J</creatorcontrib><description>The present series of experiments was undertaken to develop an understanding of the function of the abdominal rotation response (ARR) in Tenebrio molitor pupae. This response, which composes virtually the entire observable behavioral repertoire of the pupae, can be described as a relatively vigorous circular rotation of the abdominal segments elicited by tactile or electrical stimulation. The experimental strategy employed involved collecting evidence that appeared relevant either directly or indirectly to several "possible" functions derived from an a priori consideration of what little was known of the behavior. Improved functional hypotheses, rather than conclusive proof, was the overall aim. Experiments 1 and 2 focused on the possible utility of the ARR as an escape response. A rapid series of ARRs resulting in locomotion were elicited by administering a potentially lethal heat/light stimulus. There was a tendency for the pupae to move away from (as opposed to toward) the direction of the source of stimulation. Experiment 3 investigated the effect of shock stimulus intensity on habituation of the ARR. Increased intensity resulted in a greater probability of eliciting ARRs, more vigorous ARRs, and less rapid habituation. Experiment 4 examined the speed of recovery from habituation to a repeated tactile stimulus. Results showed that recovery followed a negatively accelerated increasing function with approximately 50 percent recovery occurring within 15 min, and almost complete recovery by 2 hr following the termination of stimulation. Experiment 5 compared tactile stimulus habituation for 10 independent groups of pupae differing in developmental age. Young pupae (days 1 & 2) and old pupae (days 9 & 10) showed little habituation. Mid-phase animals (days 5 & 6) habituated most readily. Experiment 6 employed six newly pupated subjects (day 1) mounted in such a way that "spontaneous" ARRs could be continuously recorded (via a photocell system) throughout the entire pupal stage. All animals made spontaneous ARRs. The data were bimodal with most of the responses observed early (days 1 & 2) and late (days 8, 9 & 10) in the stage. In Experiment 7 new pupae (day 1) were positioned on a point drawn on a paper surface. Animals were checked on each day of development and the distance moved across the surface was recorded. Results indicated that animals were quite active (minimum of 40 percent showing movement on any day), and that the fluctuation in this activity, as a function of developmental age, appeared to mirror the U-shaped ARR developmental curves reported in the previous Experiments 5 and 6. It is argued that the data are consistent with a multiple function interpretation of abdominal rotation. The authors hypothesize that the ARR serves (1) as a means of defense from external threats (predators, parasites, objects, etc.); (2) as a locomotor device to escape unfavorable environmental conditions; and (3) as an aid to physical emergence from the pupal skin. /// Die Experimente wurden unternommen um ein besseres Verständnis der Funktion der Hinterleibs-Rotations-Reaktion (ARR) bei der Puppe des Tenebrio molitor zu entwickeln. Diese Reaktion, welche im wesentlichen das ganze beobachtbare Verhaltensrepertoire der Puppe umfasst, kann als eine relativ kräftige cirkuläre Rotation der Hinterleibssegmente beschrieben werden und kann durch taktilen oder elektrischen Reiz ausgelöst werden. Hauptziel war um mittels experimentell gefundener Daten funktionelle Hypothesen besser zu gründen. Experiment 1 und 2 konzentrierten sich auf die mögliche Nützlichkeit der ARR als eine Fluchtreaktion. Eine Reihe von ARRs, welche in Fortbewegung resultierten, wurde durch einen potentiell tödlichen Hitze/Lichtreiz ausgelöst. Eine Tendenz der Puppe, sich abwärts von der Reizquelle zu bewegen konnte festgestellt werden. Experiment 3 untersuchte die Wirkung der Intensität eines elektrischen Schlagreizes auf die Gewöhnung der ARR. Mit zunehmender Intensität erhöhte sich die Wahrscheinlichkeit der Auslösung von ARRs, kräftiger ARRs, und weniger schneller Gewöhnung. Experiment 4 untersuchte die Geschwindigkeit mit der sich die normale Reizschwelle, nach Gewöhnung an einen wiederholten Tastriez, wiederherstellte. Die Resultate zeigten, dass Wiederherstellung der normalen Reizschwelle einer negativ zunehmenden Funktion folgte mit ungefähr 50 Prozent Wiederherstellung innerhalb von 15 und mit fast kompleter Wiederherstellung innerhalb von 120 Minuten nach Beendigung der Reizung. Experiment 5 verglich die Tastreizgewöhnung von 10 Puppengruppen von unterschiedlichem Entwicklungsalter. Junge Puppen (1 und 2 Tage alt) und alte Puppen (9 und 10 Tage alt) zeigten geringe Gewöhnung. Die 5 und 6 Tage alte Tiere gewöhnten sich am schnellsten. In Experiment 6 wurden sechs 1 Tag alte Versuchspuppen verwendet. Die Versuchsanordnung war derart, dass "spontane" ARRs dauernd registriert werden konnten während des ganzen Puppenstadiums. Alle Tiere zeigten spontane ARRs. Die Werte waren bimodal, die meisten ARRs wurden zu Beginn (1 und 2 Tage) und am Ende (8, 9 und 10 Tage) des Stadiums beobachtet. In Experiment 7 wurden 1 Tag alte Puppen auf einem auf ein Papier gezeichneten Punkt angeordnet. Die Tiere wurden täglich während ihrer Entwicklung geprüft, und die Distanz über die sie sich bewegt hatten, wurde gemessen. Die Resultate zeigten, dass die Tiere ziemlich aktiv waren (an allen Tagen bewegten sich minimal 40 Prozent der Puppen) und dass die Grösse dieser Bewegungen, als eine Funktion des Entwicklungsalters, fast gänzlich die bimodale Kurve der Experimente 5 und 6 widerspiegelten. Es wird angenommen, dass die Werte mit einer mehrfachen funktionellen Deutung der ARR übereinstimmen. Die Autoren nehmen an, dass die ARR (1) als Abwehrmittel gegen Gefahren dient (Raubfeinde, Parasiten, Gegenstände, etc.); (2) als ein Fortbewegungsmittel um ungünstigen Umgebungseinflüssen zu entfliehen; und (3) als ein Hilfsmittel für das Abstreifen der Puppenhaut.</description><identifier>ISSN: 0005-7959</identifier><identifier>EISSN: 1568-539X</identifier><identifier>DOI: 10.1163/156853974X00084</identifier><identifier>PMID: 4421177</identifier><language>eng</language><publisher>The Netherlands: Brill</publisher><subject>Adult insects ; Adults ; Animals ; Developmental biology ; Electric Stimulation ; Habituation ; Habituation, Psychophysiologic ; Hot Temperature ; Insect larvae ; Insecta - physiology ; Lamps ; Larval development ; Metamorphosis, Biological ; Models, Biological ; Motor Activity ; Predators ; Pupa - physiology ; Pupae ; Rotation ; Touch</subject><ispartof>Behaviour, 1974, Vol.50 (1-2), p.152-171</ispartof><rights>1974 Koninklijke Brill NV, Leiden, The Netherlands</rights><rights>Copyright 1974 E. J. Brill</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b483t-c6d0864736a170403811f34953a2124370c631944dae4da7197b21beedc29b423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4533604$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4533604$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,4009,27848,27902,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4421177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Askew, Henry R</creatorcontrib><creatorcontrib>Kurtz, Perry J</creatorcontrib><title>Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor</title><title>Behaviour</title><addtitle>BEH</addtitle><description>The present series of experiments was undertaken to develop an understanding of the function of the abdominal rotation response (ARR) in Tenebrio molitor pupae. This response, which composes virtually the entire observable behavioral repertoire of the pupae, can be described as a relatively vigorous circular rotation of the abdominal segments elicited by tactile or electrical stimulation. The experimental strategy employed involved collecting evidence that appeared relevant either directly or indirectly to several "possible" functions derived from an a priori consideration of what little was known of the behavior. Improved functional hypotheses, rather than conclusive proof, was the overall aim. Experiments 1 and 2 focused on the possible utility of the ARR as an escape response. A rapid series of ARRs resulting in locomotion were elicited by administering a potentially lethal heat/light stimulus. There was a tendency for the pupae to move away from (as opposed to toward) the direction of the source of stimulation. Experiment 3 investigated the effect of shock stimulus intensity on habituation of the ARR. Increased intensity resulted in a greater probability of eliciting ARRs, more vigorous ARRs, and less rapid habituation. Experiment 4 examined the speed of recovery from habituation to a repeated tactile stimulus. Results showed that recovery followed a negatively accelerated increasing function with approximately 50 percent recovery occurring within 15 min, and almost complete recovery by 2 hr following the termination of stimulation. Experiment 5 compared tactile stimulus habituation for 10 independent groups of pupae differing in developmental age. Young pupae (days 1 & 2) and old pupae (days 9 & 10) showed little habituation. Mid-phase animals (days 5 & 6) habituated most readily. Experiment 6 employed six newly pupated subjects (day 1) mounted in such a way that "spontaneous" ARRs could be continuously recorded (via a photocell system) throughout the entire pupal stage. All animals made spontaneous ARRs. The data were bimodal with most of the responses observed early (days 1 & 2) and late (days 8, 9 & 10) in the stage. In Experiment 7 new pupae (day 1) were positioned on a point drawn on a paper surface. Animals were checked on each day of development and the distance moved across the surface was recorded. Results indicated that animals were quite active (minimum of 40 percent showing movement on any day), and that the fluctuation in this activity, as a function of developmental age, appeared to mirror the U-shaped ARR developmental curves reported in the previous Experiments 5 and 6. It is argued that the data are consistent with a multiple function interpretation of abdominal rotation. The authors hypothesize that the ARR serves (1) as a means of defense from external threats (predators, parasites, objects, etc.); (2) as a locomotor device to escape unfavorable environmental conditions; and (3) as an aid to physical emergence from the pupal skin. /// Die Experimente wurden unternommen um ein besseres Verständnis der Funktion der Hinterleibs-Rotations-Reaktion (ARR) bei der Puppe des Tenebrio molitor zu entwickeln. Diese Reaktion, welche im wesentlichen das ganze beobachtbare Verhaltensrepertoire der Puppe umfasst, kann als eine relativ kräftige cirkuläre Rotation der Hinterleibssegmente beschrieben werden und kann durch taktilen oder elektrischen Reiz ausgelöst werden. Hauptziel war um mittels experimentell gefundener Daten funktionelle Hypothesen besser zu gründen. Experiment 1 und 2 konzentrierten sich auf die mögliche Nützlichkeit der ARR als eine Fluchtreaktion. Eine Reihe von ARRs, welche in Fortbewegung resultierten, wurde durch einen potentiell tödlichen Hitze/Lichtreiz ausgelöst. Eine Tendenz der Puppe, sich abwärts von der Reizquelle zu bewegen konnte festgestellt werden. Experiment 3 untersuchte die Wirkung der Intensität eines elektrischen Schlagreizes auf die Gewöhnung der ARR. Mit zunehmender Intensität erhöhte sich die Wahrscheinlichkeit der Auslösung von ARRs, kräftiger ARRs, und weniger schneller Gewöhnung. Experiment 4 untersuchte die Geschwindigkeit mit der sich die normale Reizschwelle, nach Gewöhnung an einen wiederholten Tastriez, wiederherstellte. Die Resultate zeigten, dass Wiederherstellung der normalen Reizschwelle einer negativ zunehmenden Funktion folgte mit ungefähr 50 Prozent Wiederherstellung innerhalb von 15 und mit fast kompleter Wiederherstellung innerhalb von 120 Minuten nach Beendigung der Reizung. Experiment 5 verglich die Tastreizgewöhnung von 10 Puppengruppen von unterschiedlichem Entwicklungsalter. Junge Puppen (1 und 2 Tage alt) und alte Puppen (9 und 10 Tage alt) zeigten geringe Gewöhnung. Die 5 und 6 Tage alte Tiere gewöhnten sich am schnellsten. In Experiment 6 wurden sechs 1 Tag alte Versuchspuppen verwendet. Die Versuchsanordnung war derart, dass "spontane" ARRs dauernd registriert werden konnten während des ganzen Puppenstadiums. Alle Tiere zeigten spontane ARRs. Die Werte waren bimodal, die meisten ARRs wurden zu Beginn (1 und 2 Tage) und am Ende (8, 9 und 10 Tage) des Stadiums beobachtet. In Experiment 7 wurden 1 Tag alte Puppen auf einem auf ein Papier gezeichneten Punkt angeordnet. Die Tiere wurden täglich während ihrer Entwicklung geprüft, und die Distanz über die sie sich bewegt hatten, wurde gemessen. Die Resultate zeigten, dass die Tiere ziemlich aktiv waren (an allen Tagen bewegten sich minimal 40 Prozent der Puppen) und dass die Grösse dieser Bewegungen, als eine Funktion des Entwicklungsalters, fast gänzlich die bimodale Kurve der Experimente 5 und 6 widerspiegelten. Es wird angenommen, dass die Werte mit einer mehrfachen funktionellen Deutung der ARR übereinstimmen. Die Autoren nehmen an, dass die ARR (1) als Abwehrmittel gegen Gefahren dient (Raubfeinde, Parasiten, Gegenstände, etc.); (2) als ein Fortbewegungsmittel um ungünstigen Umgebungseinflüssen zu entfliehen; und (3) als ein Hilfsmittel für das Abstreifen der Puppenhaut.</description><subject>Adult insects</subject><subject>Adults</subject><subject>Animals</subject><subject>Developmental biology</subject><subject>Electric Stimulation</subject><subject>Habituation</subject><subject>Habituation, Psychophysiologic</subject><subject>Hot Temperature</subject><subject>Insect larvae</subject><subject>Insecta - physiology</subject><subject>Lamps</subject><subject>Larval development</subject><subject>Metamorphosis, Biological</subject><subject>Models, Biological</subject><subject>Motor Activity</subject><subject>Predators</subject><subject>Pupa - physiology</subject><subject>Pupae</subject><subject>Rotation</subject><subject>Touch</subject><issn>0005-7959</issn><issn>1568-539X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNp1kMtrGzEQxkVoSR0n514aWAj0to1Gz91jcOq-XBIcl-QmtLtjIne9cqRdSP_7yrFJSqAHIWa-37w-Qt4D_QSg-DlIVUheanFHKS3EARltM3lK3b0ho5STuS5l-Y4cxbhKoZZcHpJDIRiA1iNye9MPjcOYXXVZf4_ZdOjq3vku88un-KJq_Np1ts3mvrdPyhzjxncRM9dl18PG4pZdYIdVcD776VvX-3BM3i5tG_Fk_4_Jr-nnxeRrPrv68m1yMcsrUfA-r1VDCyU0VxY0FZQXAEsuSsktAya4prXiUArRWExPQ6krBhViU7OyEoyPycdd303wDwPG3qxdrLFtbYd-iKZgUhaQBozJ2Stw5YeQDosGeJrLlJaQqPMdVQcfY8Cl2QS3tuGPAWq2hptXhqeK033foVpj88zvHU76h52-ismWF1lyrui2PN_JLvb4-Czb8NsozbU0338sDLudzBezyxszfeGT2W37zw3_We8vAo-eag</recordid><startdate>1974</startdate><enddate>1974</enddate><creator>Askew, Henry R</creator><creator>Kurtz, Perry J</creator><general>Brill</general><general>BRILL</general><general>E. J. Brill</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HQAFP</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>1974</creationdate><title>Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor</title><author>Askew, Henry R ; Kurtz, Perry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b483t-c6d0864736a170403811f34953a2124370c631944dae4da7197b21beedc29b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Adult insects</topic><topic>Adults</topic><topic>Animals</topic><topic>Developmental biology</topic><topic>Electric Stimulation</topic><topic>Habituation</topic><topic>Habituation, Psychophysiologic</topic><topic>Hot Temperature</topic><topic>Insect larvae</topic><topic>Insecta - physiology</topic><topic>Lamps</topic><topic>Larval development</topic><topic>Metamorphosis, Biological</topic><topic>Models, Biological</topic><topic>Motor Activity</topic><topic>Predators</topic><topic>Pupa - physiology</topic><topic>Pupae</topic><topic>Rotation</topic><topic>Touch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askew, Henry R</creatorcontrib><creatorcontrib>Kurtz, Perry J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 23</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askew, Henry R</au><au>Kurtz, Perry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor</atitle><jtitle>Behaviour</jtitle><addtitle>BEH</addtitle><date>1974</date><risdate>1974</risdate><volume>50</volume><issue>1-2</issue><spage>152</spage><epage>171</epage><pages>152-171</pages><issn>0005-7959</issn><eissn>1568-539X</eissn><abstract>The present series of experiments was undertaken to develop an understanding of the function of the abdominal rotation response (ARR) in Tenebrio molitor pupae. This response, which composes virtually the entire observable behavioral repertoire of the pupae, can be described as a relatively vigorous circular rotation of the abdominal segments elicited by tactile or electrical stimulation. The experimental strategy employed involved collecting evidence that appeared relevant either directly or indirectly to several "possible" functions derived from an a priori consideration of what little was known of the behavior. Improved functional hypotheses, rather than conclusive proof, was the overall aim. Experiments 1 and 2 focused on the possible utility of the ARR as an escape response. A rapid series of ARRs resulting in locomotion were elicited by administering a potentially lethal heat/light stimulus. There was a tendency for the pupae to move away from (as opposed to toward) the direction of the source of stimulation. Experiment 3 investigated the effect of shock stimulus intensity on habituation of the ARR. Increased intensity resulted in a greater probability of eliciting ARRs, more vigorous ARRs, and less rapid habituation. Experiment 4 examined the speed of recovery from habituation to a repeated tactile stimulus. Results showed that recovery followed a negatively accelerated increasing function with approximately 50 percent recovery occurring within 15 min, and almost complete recovery by 2 hr following the termination of stimulation. Experiment 5 compared tactile stimulus habituation for 10 independent groups of pupae differing in developmental age. Young pupae (days 1 & 2) and old pupae (days 9 & 10) showed little habituation. Mid-phase animals (days 5 & 6) habituated most readily. Experiment 6 employed six newly pupated subjects (day 1) mounted in such a way that "spontaneous" ARRs could be continuously recorded (via a photocell system) throughout the entire pupal stage. All animals made spontaneous ARRs. The data were bimodal with most of the responses observed early (days 1 & 2) and late (days 8, 9 & 10) in the stage. In Experiment 7 new pupae (day 1) were positioned on a point drawn on a paper surface. Animals were checked on each day of development and the distance moved across the surface was recorded. Results indicated that animals were quite active (minimum of 40 percent showing movement on any day), and that the fluctuation in this activity, as a function of developmental age, appeared to mirror the U-shaped ARR developmental curves reported in the previous Experiments 5 and 6. It is argued that the data are consistent with a multiple function interpretation of abdominal rotation. The authors hypothesize that the ARR serves (1) as a means of defense from external threats (predators, parasites, objects, etc.); (2) as a locomotor device to escape unfavorable environmental conditions; and (3) as an aid to physical emergence from the pupal skin. /// Die Experimente wurden unternommen um ein besseres Verständnis der Funktion der Hinterleibs-Rotations-Reaktion (ARR) bei der Puppe des Tenebrio molitor zu entwickeln. Diese Reaktion, welche im wesentlichen das ganze beobachtbare Verhaltensrepertoire der Puppe umfasst, kann als eine relativ kräftige cirkuläre Rotation der Hinterleibssegmente beschrieben werden und kann durch taktilen oder elektrischen Reiz ausgelöst werden. Hauptziel war um mittels experimentell gefundener Daten funktionelle Hypothesen besser zu gründen. Experiment 1 und 2 konzentrierten sich auf die mögliche Nützlichkeit der ARR als eine Fluchtreaktion. Eine Reihe von ARRs, welche in Fortbewegung resultierten, wurde durch einen potentiell tödlichen Hitze/Lichtreiz ausgelöst. Eine Tendenz der Puppe, sich abwärts von der Reizquelle zu bewegen konnte festgestellt werden. Experiment 3 untersuchte die Wirkung der Intensität eines elektrischen Schlagreizes auf die Gewöhnung der ARR. Mit zunehmender Intensität erhöhte sich die Wahrscheinlichkeit der Auslösung von ARRs, kräftiger ARRs, und weniger schneller Gewöhnung. Experiment 4 untersuchte die Geschwindigkeit mit der sich die normale Reizschwelle, nach Gewöhnung an einen wiederholten Tastriez, wiederherstellte. Die Resultate zeigten, dass Wiederherstellung der normalen Reizschwelle einer negativ zunehmenden Funktion folgte mit ungefähr 50 Prozent Wiederherstellung innerhalb von 15 und mit fast kompleter Wiederherstellung innerhalb von 120 Minuten nach Beendigung der Reizung. Experiment 5 verglich die Tastreizgewöhnung von 10 Puppengruppen von unterschiedlichem Entwicklungsalter. Junge Puppen (1 und 2 Tage alt) und alte Puppen (9 und 10 Tage alt) zeigten geringe Gewöhnung. Die 5 und 6 Tage alte Tiere gewöhnten sich am schnellsten. In Experiment 6 wurden sechs 1 Tag alte Versuchspuppen verwendet. Die Versuchsanordnung war derart, dass "spontane" ARRs dauernd registriert werden konnten während des ganzen Puppenstadiums. Alle Tiere zeigten spontane ARRs. Die Werte waren bimodal, die meisten ARRs wurden zu Beginn (1 und 2 Tage) und am Ende (8, 9 und 10 Tage) des Stadiums beobachtet. In Experiment 7 wurden 1 Tag alte Puppen auf einem auf ein Papier gezeichneten Punkt angeordnet. Die Tiere wurden täglich während ihrer Entwicklung geprüft, und die Distanz über die sie sich bewegt hatten, wurde gemessen. Die Resultate zeigten, dass die Tiere ziemlich aktiv waren (an allen Tagen bewegten sich minimal 40 Prozent der Puppen) und dass die Grösse dieser Bewegungen, als eine Funktion des Entwicklungsalters, fast gänzlich die bimodale Kurve der Experimente 5 und 6 widerspiegelten. Es wird angenommen, dass die Werte mit einer mehrfachen funktionellen Deutung der ARR übereinstimmen. Die Autoren nehmen an, dass die ARR (1) als Abwehrmittel gegen Gefahren dient (Raubfeinde, Parasiten, Gegenstände, etc.); (2) als ein Fortbewegungsmittel um ungünstigen Umgebungseinflüssen zu entfliehen; und (3) als ein Hilfsmittel für das Abstreifen der Puppenhaut.</abstract><cop>The Netherlands</cop><pub>Brill</pub><pmid>4421177</pmid><doi>10.1163/156853974X00084</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-7959 |
ispartof | Behaviour, 1974, Vol.50 (1-2), p.152-171 |
issn | 0005-7959 1568-539X |
language | eng |
recordid | cdi_proquest_miscellaneous_82558147 |
source | MEDLINE; Periodicals Index Online; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Adult insects Adults Animals Developmental biology Electric Stimulation Habituation Habituation, Psychophysiologic Hot Temperature Insect larvae Insecta - physiology Lamps Larval development Metamorphosis, Biological Models, Biological Motor Activity Predators Pupa - physiology Pupae Rotation Touch |
title | Studies On the Function of the Abdominal Rotation Response in Pupae of Tenebrio Molitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20On%20the%20Function%20of%20the%20Abdominal%20Rotation%20Response%20in%20Pupae%20of%20Tenebrio%20Molitor&rft.jtitle=Behaviour&rft.au=Askew,%20Henry%20R&rft.date=1974&rft.volume=50&rft.issue=1-2&rft.spage=152&rft.epage=171&rft.pages=152-171&rft.issn=0005-7959&rft.eissn=1568-539X&rft_id=info:doi/10.1163/156853974X00084&rft_dat=%3Cjstor_proqu%3E4533604%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303826751&rft_id=info:pmid/4421177&rft_jstor_id=4533604&rfr_iscdi=true |