Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization

This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2011-01, Vol.65 (1), p.99-104
Hauptverfasser: Malacarne, Luis C., Astrath, Nelson G. C., Lukasievicz, Gustavo V. B., Lenzi, Ervin K., Baesso, Mauro L., Bialkowski, Stephen E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 99
container_title Applied spectroscopy
container_volume 65
creator Malacarne, Luis C.
Astrath, Nelson G. C.
Lukasievicz, Gustavo V. B.
Lenzi, Ervin K.
Baesso, Mauro L.
Bialkowski, Stephen E.
description This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite element analysis (FEA) software solution. The FEA modeling results were found to be in excellent agreement with the analytical solutions. Our results also show that the heat transfer between the sample surface and the air coupling fluid does not introduce an important effect over the induced phase shift in the sample when compared to the solution obtained without considering axial heat flux. On the other hand, the thermal lens created in the air coupling fluid has a significant effect on the predicted time-dependent photothermal signals. When water is used as fluid, the heat coupling leads to a more significant effect in both sample and fluid phase shift. Our results could be used to obtain physical properties of low optical absorption fluids by using a reference solid sample in both thermal lens and thermal mirror experiments.
doi_str_mv 10.1366/10-06096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822904049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1366_10-06096</sage_id><sourcerecordid>822904049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-4ac79129be5ef0666459b26531d7ba21eeb96a99d49ff32e7fc65f32c47c309a3</originalsourceid><addsrcrecordid>eNplkLtu2zAUhokgQew4BfoEBZegXZTyIlFhN8NoLoCNALE7CxR1FNOgRIWUUrhTHyBjnrBPUjpO0qHTuX34gPMj9JGSc8qF-EpJQgSR4gCNqUx5wjNODtGYEMKTnLCLEToJYRPHTPLsGI0YZZTSTI7R08o0kNxBcPYRKrxag2-UxXNoA1btv8XCeO88Xnage--Cdt0W_zT9Gi9V01n48_v50g6mwtegejxzQ2dNe_8NT2O_u_eAF64Ci-soWagevInS2Vp5pXfDL9Ub156io1rZAB9e6wT9uPy-ml0n89urm9l0nmhOWZ-kSueSMllCBjURQqSZLJnIOK3yUjEKUEqhpKxSWdecQV5rkcVGp7nmRCo-QZ_33s67hwFCXzQmaLBWteCGUFwwJklKUhnJL3tSx6eDh7rovGmU3xaUFLvod_Ul-oh-epUOZQPVO_iWdQTO9kBQ91Bs3ODb-OT_or_yNouT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822904049</pqid></control><display><type>article</type><title>Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization</title><source>SAGE Complete A-Z List</source><creator>Malacarne, Luis C. ; Astrath, Nelson G. C. ; Lukasievicz, Gustavo V. B. ; Lenzi, Ervin K. ; Baesso, Mauro L. ; Bialkowski, Stephen E.</creator><creatorcontrib>Malacarne, Luis C. ; Astrath, Nelson G. C. ; Lukasievicz, Gustavo V. B. ; Lenzi, Ervin K. ; Baesso, Mauro L. ; Bialkowski, Stephen E.</creatorcontrib><description>This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite element analysis (FEA) software solution. The FEA modeling results were found to be in excellent agreement with the analytical solutions. Our results also show that the heat transfer between the sample surface and the air coupling fluid does not introduce an important effect over the induced phase shift in the sample when compared to the solution obtained without considering axial heat flux. On the other hand, the thermal lens created in the air coupling fluid has a significant effect on the predicted time-dependent photothermal signals. When water is used as fluid, the heat coupling leads to a more significant effect in both sample and fluid phase shift. Our results could be used to obtain physical properties of low optical absorption fluids by using a reference solid sample in both thermal lens and thermal mirror experiments.</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1366/10-06096</identifier><identifier>PMID: 21211159</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 2011-01, Vol.65 (1), p.99-104</ispartof><rights>2011 Society for Applied Spectroscopy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-4ac79129be5ef0666459b26531d7ba21eeb96a99d49ff32e7fc65f32c47c309a3</citedby><cites>FETCH-LOGICAL-c312t-4ac79129be5ef0666459b26531d7ba21eeb96a99d49ff32e7fc65f32c47c309a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1366/10-06096$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1366/10-06096$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21211159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malacarne, Luis C.</creatorcontrib><creatorcontrib>Astrath, Nelson G. C.</creatorcontrib><creatorcontrib>Lukasievicz, Gustavo V. B.</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Baesso, Mauro L.</creatorcontrib><creatorcontrib>Bialkowski, Stephen E.</creatorcontrib><title>Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization</title><title>Applied spectroscopy</title><addtitle>Appl Spectrosc</addtitle><description>This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite element analysis (FEA) software solution. The FEA modeling results were found to be in excellent agreement with the analytical solutions. Our results also show that the heat transfer between the sample surface and the air coupling fluid does not introduce an important effect over the induced phase shift in the sample when compared to the solution obtained without considering axial heat flux. On the other hand, the thermal lens created in the air coupling fluid has a significant effect on the predicted time-dependent photothermal signals. When water is used as fluid, the heat coupling leads to a more significant effect in both sample and fluid phase shift. Our results could be used to obtain physical properties of low optical absorption fluids by using a reference solid sample in both thermal lens and thermal mirror experiments.</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplkLtu2zAUhokgQew4BfoEBZegXZTyIlFhN8NoLoCNALE7CxR1FNOgRIWUUrhTHyBjnrBPUjpO0qHTuX34gPMj9JGSc8qF-EpJQgSR4gCNqUx5wjNODtGYEMKTnLCLEToJYRPHTPLsGI0YZZTSTI7R08o0kNxBcPYRKrxag2-UxXNoA1btv8XCeO88Xnage--Cdt0W_zT9Gi9V01n48_v50g6mwtegejxzQ2dNe_8NT2O_u_eAF64Ci-soWagevInS2Vp5pXfDL9Ub156io1rZAB9e6wT9uPy-ml0n89urm9l0nmhOWZ-kSueSMllCBjURQqSZLJnIOK3yUjEKUEqhpKxSWdecQV5rkcVGp7nmRCo-QZ_33s67hwFCXzQmaLBWteCGUFwwJklKUhnJL3tSx6eDh7rovGmU3xaUFLvod_Ul-oh-epUOZQPVO_iWdQTO9kBQ91Bs3ODb-OT_or_yNouT</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Malacarne, Luis C.</creator><creator>Astrath, Nelson G. C.</creator><creator>Lukasievicz, Gustavo V. B.</creator><creator>Lenzi, Ervin K.</creator><creator>Baesso, Mauro L.</creator><creator>Bialkowski, Stephen E.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization</title><author>Malacarne, Luis C. ; Astrath, Nelson G. C. ; Lukasievicz, Gustavo V. B. ; Lenzi, Ervin K. ; Baesso, Mauro L. ; Bialkowski, Stephen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-4ac79129be5ef0666459b26531d7ba21eeb96a99d49ff32e7fc65f32c47c309a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malacarne, Luis C.</creatorcontrib><creatorcontrib>Astrath, Nelson G. C.</creatorcontrib><creatorcontrib>Lukasievicz, Gustavo V. B.</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Baesso, Mauro L.</creatorcontrib><creatorcontrib>Bialkowski, Stephen E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malacarne, Luis C.</au><au>Astrath, Nelson G. C.</au><au>Lukasievicz, Gustavo V. B.</au><au>Lenzi, Ervin K.</au><au>Baesso, Mauro L.</au><au>Bialkowski, Stephen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization</atitle><jtitle>Applied spectroscopy</jtitle><addtitle>Appl Spectrosc</addtitle><date>2011-01</date><risdate>2011</risdate><volume>65</volume><issue>1</issue><spage>99</spage><epage>104</epage><pages>99-104</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite element analysis (FEA) software solution. The FEA modeling results were found to be in excellent agreement with the analytical solutions. Our results also show that the heat transfer between the sample surface and the air coupling fluid does not introduce an important effect over the induced phase shift in the sample when compared to the solution obtained without considering axial heat flux. On the other hand, the thermal lens created in the air coupling fluid has a significant effect on the predicted time-dependent photothermal signals. When water is used as fluid, the heat coupling leads to a more significant effect in both sample and fluid phase shift. Our results could be used to obtain physical properties of low optical absorption fluids by using a reference solid sample in both thermal lens and thermal mirror experiments.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>21211159</pmid><doi>10.1366/10-06096</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-7028
ispartof Applied spectroscopy, 2011-01, Vol.65 (1), p.99-104
issn 0003-7028
1943-3530
language eng
recordid cdi_proquest_miscellaneous_822904049
source SAGE Complete A-Z List
title Time-Resolved Thermal Lens and Thermal Mirror Spectroscopy with Sample—Fluid Heat Coupling: A Complete Model for Material Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Resolved%20Thermal%20Lens%20and%20Thermal%20Mirror%20Spectroscopy%20with%20Sample%E2%80%94Fluid%20Heat%20Coupling:%20A%20Complete%20Model%20for%20Material%20Characterization&rft.jtitle=Applied%20spectroscopy&rft.au=Malacarne,%20Luis%20C.&rft.date=2011-01&rft.volume=65&rft.issue=1&rft.spage=99&rft.epage=104&rft.pages=99-104&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1366/10-06096&rft_dat=%3Cproquest_cross%3E822904049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822904049&rft_id=info:pmid/21211159&rft_sage_id=10.1366_10-06096&rfr_iscdi=true