Quenched large deviation principle for words in a letter sequence

When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2010-11, Vol.148 (3-4), p.403-456
Hauptverfasser: Birkner, Matthias, Greven, Andreas, den Hollander, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 3-4
container_start_page 403
container_title Probability theory and related fields
container_volume 148
creator Birkner, Matthias
Greven, Andreas
den Hollander, Frank
description When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.
doi_str_mv 10.1007/s00440-009-0235-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822522676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>822522676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLugiKvqzW2ax1LEFwgi6Dpk0tuxUtsx6Sj-e1NGFARXZ_Odcy8fYwcCTgWAPksAUkIBYAvAsiqqDTYTssQCQclNNgOhTWGgEttsJ6UXgExJnLHzhxX14Zlq3vm4IF7Te-vHduj5MrZ9aJcd8WaI_GOIdeJtzz3vaBwp8kRvU5X22Fbju0T737nLnq4uHy9uirv769uL87siSG3HwqMtQ6gr4wOqoIVotCCr5hoqxKZGWdeCZFXOG2-tMjkF2kCiNgCkyZa77GS9u4xDvpxG99qmQF3nexpWyRnEvKS0yuThH_JlWMU-P-e01JVBCzpDR_9BqJRAZawtMyXWVIhDSpEal7W8-vjpBLhJvFuLd1m8m8S7KneOv5d9Cr5ros8e008RS6HB4MThmkuT6gXF3w_-H_8C0MCQlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661268993</pqid></control><display><type>article</type><title>Quenched large deviation principle for words in a letter sequence</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</creator><creatorcontrib>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</creatorcontrib><description>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-009-0235-5</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algebra ; Annealing ; Deviation ; Economics ; Entropy ; Exact sciences and technology ; Finance ; General topics ; Insurance ; Law ; Limit theorems ; Management ; Markov processes ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Origins ; Probability ; Probability and statistics ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Quenching ; Quenching (cooling) ; Random walk ; Renewals ; Sciences and techniques of general use ; Statistics for Business ; Stochastic processes ; Stochastic systems ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2010-11, Vol.148 (3-4), p.403-456</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2009.</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</citedby><cites>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-009-0235-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-009-0235-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23170825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkner, Matthias</creatorcontrib><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Quenched large deviation principle for words in a letter sequence</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</description><subject>Algebra</subject><subject>Annealing</subject><subject>Deviation</subject><subject>Economics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>General topics</subject><subject>Insurance</subject><subject>Law</subject><subject>Limit theorems</subject><subject>Management</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Origins</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Quenching</subject><subject>Quenching (cooling)</subject><subject>Random walk</subject><subject>Renewals</subject><subject>Sciences and techniques of general use</subject><subject>Statistics for Business</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLugiKvqzW2ax1LEFwgi6Dpk0tuxUtsx6Sj-e1NGFARXZ_Odcy8fYwcCTgWAPksAUkIBYAvAsiqqDTYTssQCQclNNgOhTWGgEttsJ6UXgExJnLHzhxX14Zlq3vm4IF7Te-vHduj5MrZ9aJcd8WaI_GOIdeJtzz3vaBwp8kRvU5X22Fbju0T737nLnq4uHy9uirv769uL87siSG3HwqMtQ6gr4wOqoIVotCCr5hoqxKZGWdeCZFXOG2-tMjkF2kCiNgCkyZa77GS9u4xDvpxG99qmQF3nexpWyRnEvKS0yuThH_JlWMU-P-e01JVBCzpDR_9BqJRAZawtMyXWVIhDSpEal7W8-vjpBLhJvFuLd1m8m8S7KneOv5d9Cr5ros8e008RS6HB4MThmkuT6gXF3w_-H_8C0MCQlA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Birkner, Matthias</creator><creator>Greven, Andreas</creator><creator>den Hollander, Frank</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>0U~</scope><scope>1-H</scope><scope>L.0</scope></search><sort><creationdate>20101101</creationdate><title>Quenched large deviation principle for words in a letter sequence</title><author>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Annealing</topic><topic>Deviation</topic><topic>Economics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>General topics</topic><topic>Insurance</topic><topic>Law</topic><topic>Limit theorems</topic><topic>Management</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Origins</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Quenching</topic><topic>Quenching (cooling)</topic><topic>Random walk</topic><topic>Renewals</topic><topic>Sciences and techniques of general use</topic><topic>Statistics for Business</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkner, Matthias</creatorcontrib><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Professional Standard</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkner, Matthias</au><au>Greven, Andreas</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quenched large deviation principle for words in a letter sequence</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>148</volume><issue>3-4</issue><spage>403</spage><epage>456</epage><pages>403-456</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-009-0235-5</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2010-11, Vol.148 (3-4), p.403-456
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_822522676
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Algebra
Annealing
Deviation
Economics
Entropy
Exact sciences and technology
Finance
General topics
Insurance
Law
Limit theorems
Management
Markov processes
Mathematical analysis
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Origins
Probability
Probability and statistics
Probability Theory and Stochastic Processes
Quantitative Finance
Quenching
Quenching (cooling)
Random walk
Renewals
Sciences and techniques of general use
Statistics for Business
Stochastic processes
Stochastic systems
Studies
Theoretical
title Quenched large deviation principle for words in a letter sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quenched%20large%20deviation%20principle%20for%20words%20in%20a%20letter%20sequence&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Birkner,%20Matthias&rft.date=2010-11-01&rft.volume=148&rft.issue=3-4&rft.spage=403&rft.epage=456&rft.pages=403-456&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-009-0235-5&rft_dat=%3Cproquest_cross%3E822522676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661268993&rft_id=info:pmid/&rfr_iscdi=true