Quenched large deviation principle for words in a letter sequence
When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2010-11, Vol.148 (3-4), p.403-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 3-4 |
container_start_page | 403 |
container_title | Probability theory and related fields |
container_volume | 148 |
creator | Birkner, Matthias Greven, Andreas den Hollander, Frank |
description | When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established. |
doi_str_mv | 10.1007/s00440-009-0235-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822522676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>822522676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLugiKvqzW2ax1LEFwgi6Dpk0tuxUtsx6Sj-e1NGFARXZ_Odcy8fYwcCTgWAPksAUkIBYAvAsiqqDTYTssQCQclNNgOhTWGgEttsJ6UXgExJnLHzhxX14Zlq3vm4IF7Te-vHduj5MrZ9aJcd8WaI_GOIdeJtzz3vaBwp8kRvU5X22Fbju0T737nLnq4uHy9uirv769uL87siSG3HwqMtQ6gr4wOqoIVotCCr5hoqxKZGWdeCZFXOG2-tMjkF2kCiNgCkyZa77GS9u4xDvpxG99qmQF3nexpWyRnEvKS0yuThH_JlWMU-P-e01JVBCzpDR_9BqJRAZawtMyXWVIhDSpEal7W8-vjpBLhJvFuLd1m8m8S7KneOv5d9Cr5ros8e008RS6HB4MThmkuT6gXF3w_-H_8C0MCQlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661268993</pqid></control><display><type>article</type><title>Quenched large deviation principle for words in a letter sequence</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</creator><creatorcontrib>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</creatorcontrib><description>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-009-0235-5</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algebra ; Annealing ; Deviation ; Economics ; Entropy ; Exact sciences and technology ; Finance ; General topics ; Insurance ; Law ; Limit theorems ; Management ; Markov processes ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Origins ; Probability ; Probability and statistics ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Quenching ; Quenching (cooling) ; Random walk ; Renewals ; Sciences and techniques of general use ; Statistics for Business ; Stochastic processes ; Stochastic systems ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2010-11, Vol.148 (3-4), p.403-456</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2009.</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</citedby><cites>FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-009-0235-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-009-0235-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23170825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkner, Matthias</creatorcontrib><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Quenched large deviation principle for words in a letter sequence</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</description><subject>Algebra</subject><subject>Annealing</subject><subject>Deviation</subject><subject>Economics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>General topics</subject><subject>Insurance</subject><subject>Law</subject><subject>Limit theorems</subject><subject>Management</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Origins</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Quenching</subject><subject>Quenching (cooling)</subject><subject>Random walk</subject><subject>Renewals</subject><subject>Sciences and techniques of general use</subject><subject>Statistics for Business</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLugiKvqzW2ax1LEFwgi6Dpk0tuxUtsx6Sj-e1NGFARXZ_Odcy8fYwcCTgWAPksAUkIBYAvAsiqqDTYTssQCQclNNgOhTWGgEttsJ6UXgExJnLHzhxX14Zlq3vm4IF7Te-vHduj5MrZ9aJcd8WaI_GOIdeJtzz3vaBwp8kRvU5X22Fbju0T737nLnq4uHy9uirv769uL87siSG3HwqMtQ6gr4wOqoIVotCCr5hoqxKZGWdeCZFXOG2-tMjkF2kCiNgCkyZa77GS9u4xDvpxG99qmQF3nexpWyRnEvKS0yuThH_JlWMU-P-e01JVBCzpDR_9BqJRAZawtMyXWVIhDSpEal7W8-vjpBLhJvFuLd1m8m8S7KneOv5d9Cr5ros8e008RS6HB4MThmkuT6gXF3w_-H_8C0MCQlA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Birkner, Matthias</creator><creator>Greven, Andreas</creator><creator>den Hollander, Frank</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>0U~</scope><scope>1-H</scope><scope>L.0</scope></search><sort><creationdate>20101101</creationdate><title>Quenched large deviation principle for words in a letter sequence</title><author>Birkner, Matthias ; Greven, Andreas ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a293ccd58ac26c711f71e96b70522fd24dd1e453bfa99683bf129ce1d800e7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Annealing</topic><topic>Deviation</topic><topic>Economics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>General topics</topic><topic>Insurance</topic><topic>Law</topic><topic>Limit theorems</topic><topic>Management</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Origins</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Quenching</topic><topic>Quenching (cooling)</topic><topic>Random walk</topic><topic>Renewals</topic><topic>Sciences and techniques of general use</topic><topic>Statistics for Business</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkner, Matthias</creatorcontrib><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Professional Standard</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkner, Matthias</au><au>Greven, Andreas</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quenched large deviation principle for words in a letter sequence</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>148</volume><issue>3-4</issue><spage>403</spage><epage>456</epage><pages>403-456</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-009-0235-5</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2010-11, Vol.148 (3-4), p.403-456 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_miscellaneous_822522676 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algebra Annealing Deviation Economics Entropy Exact sciences and technology Finance General topics Insurance Law Limit theorems Management Markov processes Mathematical analysis Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Origins Probability Probability and statistics Probability Theory and Stochastic Processes Quantitative Finance Quenching Quenching (cooling) Random walk Renewals Sciences and techniques of general use Statistics for Business Stochastic processes Stochastic systems Studies Theoretical |
title | Quenched large deviation principle for words in a letter sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quenched%20large%20deviation%20principle%20for%20words%20in%20a%20letter%20sequence&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Birkner,%20Matthias&rft.date=2010-11-01&rft.volume=148&rft.issue=3-4&rft.spage=403&rft.epage=456&rft.pages=403-456&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-009-0235-5&rft_dat=%3Cproquest_cross%3E822522676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661268993&rft_id=info:pmid/&rfr_iscdi=true |