Measuring venous oxygenation using the photoplethysmograph waveform

Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical monitoring and computing 2010-08, Vol.24 (4), p.295-303
Hauptverfasser: Walton, Zachary D., Kyriacou, Panayiotis A., Silverman, David G., Shelley, Kirk H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 4
container_start_page 295
container_title Journal of clinical monitoring and computing
container_volume 24
creator Walton, Zachary D.
Kyriacou, Panayiotis A.
Silverman, David G.
Shelley, Kirk H.
description Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set. Results. Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction ( p  
doi_str_mv 10.1007/s10877-010-9248-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822522548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115539391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</originalsourceid><addsrcrecordid>eNqFke9r1DAYgMNQ3Nz8A_ZFiiB-quZN07zJRzmmG0z8op9DmqZ3PdqmJu3N_vfLebcdCCIEEsjz_nwIuQb6ESjFTxGoRMwp0FwxLvPljFxAiUXOBPAX6V1IzKGgeE5ex7illCpZwCtyzqjgXMnygqy-ORPn0A7rbOcGP8fM_17WbjBT64dsjvuPaeOyceMnP3Zu2iyx9-tgxk32YHau8aG_Ii8b00X35nhfkp9fbn6sbvP771_vVp_vc8uxnHIOVJiKKyFKtIpaC3UBDCQXTHBG65K7Gik6wFqAU1gJYNhUFShbcVS8uCQfDnnH4H_NLk66b6N1XWcGlzrXkrEyHS7_SyKXimFaUiLf_UVu_RyGNEaCBCBXwBIEB8gGH2NwjR5D25uwaKB6b0IfTOhkQu9N6CXFvD0mnqve1c8RT6tPwPsjYKI1XRPMYNt44grAQvyZmh24OO41uXDq8N_VHwHSEZ_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746174912</pqid></control><display><type>article</type><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</creator><creatorcontrib>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</creatorcontrib><description>Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set. Results. Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction ( p  &lt; 0.0071). Conclusions. This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-010-9248-y</identifier><identifier>PMID: 20644985</identifier><identifier>CODEN: JCMCFG</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Anesthesiology ; Biological and medical sciences ; Blood ; Blood and lymphatic vessels ; Cardiology. Vascular system ; Critical Care Medicine ; Data Interpretation, Statistical ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Esophagus - metabolism ; Harmonics ; Health Sciences ; Humans ; Intensive ; Intensive care medicine ; Mathematical analysis ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Oxygen - blood ; Oxygenation ; Patients ; Photoplethysmography - instrumentation ; Photoplethysmography - methods ; Pulsatile Flow ; Saturation ; Statistics for Life Sciences ; Veins ; Waveforms</subject><ispartof>Journal of clinical monitoring and computing, 2010-08, Vol.24 (4), p.295-303</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</citedby><cites>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10877-010-9248-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10877-010-9248-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23173694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20644985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Zachary D.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><creatorcontrib>Silverman, David G.</creatorcontrib><creatorcontrib>Shelley, Kirk H.</creatorcontrib><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set. Results. Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction ( p  &lt; 0.0071). Conclusions. This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</description><subject>Algorithms</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Anesthesiology</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Blood and lymphatic vessels</subject><subject>Cardiology. Vascular system</subject><subject>Critical Care Medicine</subject><subject>Data Interpretation, Statistical</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Esophagus - metabolism</subject><subject>Harmonics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Intensive</subject><subject>Intensive care medicine</subject><subject>Mathematical analysis</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oxygen - blood</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Photoplethysmography - instrumentation</subject><subject>Photoplethysmography - methods</subject><subject>Pulsatile Flow</subject><subject>Saturation</subject><subject>Statistics for Life Sciences</subject><subject>Veins</subject><subject>Waveforms</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFke9r1DAYgMNQ3Nz8A_ZFiiB-quZN07zJRzmmG0z8op9DmqZ3PdqmJu3N_vfLebcdCCIEEsjz_nwIuQb6ESjFTxGoRMwp0FwxLvPljFxAiUXOBPAX6V1IzKGgeE5ex7illCpZwCtyzqjgXMnygqy-ORPn0A7rbOcGP8fM_17WbjBT64dsjvuPaeOyceMnP3Zu2iyx9-tgxk32YHau8aG_Ii8b00X35nhfkp9fbn6sbvP771_vVp_vc8uxnHIOVJiKKyFKtIpaC3UBDCQXTHBG65K7Gik6wFqAU1gJYNhUFShbcVS8uCQfDnnH4H_NLk66b6N1XWcGlzrXkrEyHS7_SyKXimFaUiLf_UVu_RyGNEaCBCBXwBIEB8gGH2NwjR5D25uwaKB6b0IfTOhkQu9N6CXFvD0mnqve1c8RT6tPwPsjYKI1XRPMYNt44grAQvyZmh24OO41uXDq8N_VHwHSEZ_s</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Walton, Zachary D.</creator><creator>Kyriacou, Panayiotis A.</creator><creator>Silverman, David G.</creator><creator>Shelley, Kirk H.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20100801</creationdate><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><author>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Anesthesiology</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Blood and lymphatic vessels</topic><topic>Cardiology. Vascular system</topic><topic>Critical Care Medicine</topic><topic>Data Interpretation, Statistical</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Esophagus - metabolism</topic><topic>Harmonics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Intensive</topic><topic>Intensive care medicine</topic><topic>Mathematical analysis</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oxygen - blood</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Photoplethysmography - instrumentation</topic><topic>Photoplethysmography - methods</topic><topic>Pulsatile Flow</topic><topic>Saturation</topic><topic>Statistics for Life Sciences</topic><topic>Veins</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Zachary D.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><creatorcontrib>Silverman, David G.</creatorcontrib><creatorcontrib>Shelley, Kirk H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Zachary D.</au><au>Kyriacou, Panayiotis A.</au><au>Silverman, David G.</au><au>Shelley, Kirk H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring venous oxygenation using the photoplethysmograph waveform</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>24</volume><issue>4</issue><spage>295</spage><epage>303</epage><pages>295-303</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><coden>JCMCFG</coden><abstract>Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set. Results. Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction ( p  &lt; 0.0071). Conclusions. This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>20644985</pmid><doi>10.1007/s10877-010-9248-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-1307
ispartof Journal of clinical monitoring and computing, 2010-08, Vol.24 (4), p.295-303
issn 1387-1307
1573-2614
language eng
recordid cdi_proquest_miscellaneous_822522548
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Anesthesiology
Biological and medical sciences
Blood
Blood and lymphatic vessels
Cardiology. Vascular system
Critical Care Medicine
Data Interpretation, Statistical
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Esophagus - metabolism
Harmonics
Health Sciences
Humans
Intensive
Intensive care medicine
Mathematical analysis
Medical sciences
Medicine
Medicine & Public Health
Oxygen - blood
Oxygenation
Patients
Photoplethysmography - instrumentation
Photoplethysmography - methods
Pulsatile Flow
Saturation
Statistics for Life Sciences
Veins
Waveforms
title Measuring venous oxygenation using the photoplethysmograph waveform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20venous%20oxygenation%20using%20the%20photoplethysmograph%20waveform&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Walton,%20Zachary%20D.&rft.date=2010-08-01&rft.volume=24&rft.issue=4&rft.spage=295&rft.epage=303&rft.pages=295-303&rft.issn=1387-1307&rft.eissn=1573-2614&rft.coden=JCMCFG&rft_id=info:doi/10.1007/s10877-010-9248-y&rft_dat=%3Cproquest_cross%3E2115539391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746174912&rft_id=info:pmid/20644985&rfr_iscdi=true