Measuring venous oxygenation using the photoplethysmograph waveform
Objective. We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation. Methods. Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral ve...
Gespeichert in:
Veröffentlicht in: | Journal of clinical monitoring and computing 2010-08, Vol.24 (4), p.295-303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 4 |
container_start_page | 295 |
container_title | Journal of clinical monitoring and computing |
container_volume | 24 |
creator | Walton, Zachary D. Kyriacou, Panayiotis A. Silverman, David G. Shelley, Kirk H. |
description | Objective.
We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
Methods.
Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
Results.
Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (
p
|
doi_str_mv | 10.1007/s10877-010-9248-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822522548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115539391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</originalsourceid><addsrcrecordid>eNqFke9r1DAYgMNQ3Nz8A_ZFiiB-quZN07zJRzmmG0z8op9DmqZ3PdqmJu3N_vfLebcdCCIEEsjz_nwIuQb6ESjFTxGoRMwp0FwxLvPljFxAiUXOBPAX6V1IzKGgeE5ex7illCpZwCtyzqjgXMnygqy-ORPn0A7rbOcGP8fM_17WbjBT64dsjvuPaeOyceMnP3Zu2iyx9-tgxk32YHau8aG_Ii8b00X35nhfkp9fbn6sbvP771_vVp_vc8uxnHIOVJiKKyFKtIpaC3UBDCQXTHBG65K7Gik6wFqAU1gJYNhUFShbcVS8uCQfDnnH4H_NLk66b6N1XWcGlzrXkrEyHS7_SyKXimFaUiLf_UVu_RyGNEaCBCBXwBIEB8gGH2NwjR5D25uwaKB6b0IfTOhkQu9N6CXFvD0mnqve1c8RT6tPwPsjYKI1XRPMYNt44grAQvyZmh24OO41uXDq8N_VHwHSEZ_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746174912</pqid></control><display><type>article</type><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</creator><creatorcontrib>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</creatorcontrib><description>Objective.
We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
Methods.
Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
Results.
Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (
p
< 0.0071).
Conclusions.
This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-010-9248-y</identifier><identifier>PMID: 20644985</identifier><identifier>CODEN: JCMCFG</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Anesthesiology ; Biological and medical sciences ; Blood ; Blood and lymphatic vessels ; Cardiology. Vascular system ; Critical Care Medicine ; Data Interpretation, Statistical ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Esophagus - metabolism ; Harmonics ; Health Sciences ; Humans ; Intensive ; Intensive care medicine ; Mathematical analysis ; Medical sciences ; Medicine ; Medicine & Public Health ; Oxygen - blood ; Oxygenation ; Patients ; Photoplethysmography - instrumentation ; Photoplethysmography - methods ; Pulsatile Flow ; Saturation ; Statistics for Life Sciences ; Veins ; Waveforms</subject><ispartof>Journal of clinical monitoring and computing, 2010-08, Vol.24 (4), p.295-303</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</citedby><cites>FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10877-010-9248-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10877-010-9248-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23173694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20644985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Zachary D.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><creatorcontrib>Silverman, David G.</creatorcontrib><creatorcontrib>Shelley, Kirk H.</creatorcontrib><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>Objective.
We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
Methods.
Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
Results.
Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (
p
< 0.0071).
Conclusions.
This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</description><subject>Algorithms</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Anesthesiology</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Blood and lymphatic vessels</subject><subject>Cardiology. Vascular system</subject><subject>Critical Care Medicine</subject><subject>Data Interpretation, Statistical</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Esophagus - metabolism</subject><subject>Harmonics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Intensive</subject><subject>Intensive care medicine</subject><subject>Mathematical analysis</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oxygen - blood</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Photoplethysmography - instrumentation</subject><subject>Photoplethysmography - methods</subject><subject>Pulsatile Flow</subject><subject>Saturation</subject><subject>Statistics for Life Sciences</subject><subject>Veins</subject><subject>Waveforms</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFke9r1DAYgMNQ3Nz8A_ZFiiB-quZN07zJRzmmG0z8op9DmqZ3PdqmJu3N_vfLebcdCCIEEsjz_nwIuQb6ESjFTxGoRMwp0FwxLvPljFxAiUXOBPAX6V1IzKGgeE5ex7illCpZwCtyzqjgXMnygqy-ORPn0A7rbOcGP8fM_17WbjBT64dsjvuPaeOyceMnP3Zu2iyx9-tgxk32YHau8aG_Ii8b00X35nhfkp9fbn6sbvP771_vVp_vc8uxnHIOVJiKKyFKtIpaC3UBDCQXTHBG65K7Gik6wFqAU1gJYNhUFShbcVS8uCQfDnnH4H_NLk66b6N1XWcGlzrXkrEyHS7_SyKXimFaUiLf_UVu_RyGNEaCBCBXwBIEB8gGH2NwjR5D25uwaKB6b0IfTOhkQu9N6CXFvD0mnqve1c8RT6tPwPsjYKI1XRPMYNt44grAQvyZmh24OO41uXDq8N_VHwHSEZ_s</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Walton, Zachary D.</creator><creator>Kyriacou, Panayiotis A.</creator><creator>Silverman, David G.</creator><creator>Shelley, Kirk H.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20100801</creationdate><title>Measuring venous oxygenation using the photoplethysmograph waveform</title><author>Walton, Zachary D. ; Kyriacou, Panayiotis A. ; Silverman, David G. ; Shelley, Kirk H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4106ab496657c90cc1d312184626420d54ed707e17d61e97b6127fbb19cb47943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Anesthesiology</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Blood and lymphatic vessels</topic><topic>Cardiology. Vascular system</topic><topic>Critical Care Medicine</topic><topic>Data Interpretation, Statistical</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Esophagus - metabolism</topic><topic>Harmonics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Intensive</topic><topic>Intensive care medicine</topic><topic>Mathematical analysis</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oxygen - blood</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Photoplethysmography - instrumentation</topic><topic>Photoplethysmography - methods</topic><topic>Pulsatile Flow</topic><topic>Saturation</topic><topic>Statistics for Life Sciences</topic><topic>Veins</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Zachary D.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><creatorcontrib>Silverman, David G.</creatorcontrib><creatorcontrib>Shelley, Kirk H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Zachary D.</au><au>Kyriacou, Panayiotis A.</au><au>Silverman, David G.</au><au>Shelley, Kirk H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring venous oxygenation using the photoplethysmograph waveform</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>24</volume><issue>4</issue><spage>295</spage><epage>303</epage><pages>295-303</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><coden>JCMCFG</coden><abstract>Objective.
We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
Methods.
Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
Results.
Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (
p
< 0.0071).
Conclusions.
This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>20644985</pmid><doi>10.1007/s10877-010-9248-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-1307 |
ispartof | Journal of clinical monitoring and computing, 2010-08, Vol.24 (4), p.295-303 |
issn | 1387-1307 1573-2614 |
language | eng |
recordid | cdi_proquest_miscellaneous_822522548 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Anesthesiology Biological and medical sciences Blood Blood and lymphatic vessels Cardiology. Vascular system Critical Care Medicine Data Interpretation, Statistical Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Esophagus - metabolism Harmonics Health Sciences Humans Intensive Intensive care medicine Mathematical analysis Medical sciences Medicine Medicine & Public Health Oxygen - blood Oxygenation Patients Photoplethysmography - instrumentation Photoplethysmography - methods Pulsatile Flow Saturation Statistics for Life Sciences Veins Waveforms |
title | Measuring venous oxygenation using the photoplethysmograph waveform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20venous%20oxygenation%20using%20the%20photoplethysmograph%20waveform&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Walton,%20Zachary%20D.&rft.date=2010-08-01&rft.volume=24&rft.issue=4&rft.spage=295&rft.epage=303&rft.pages=295-303&rft.issn=1387-1307&rft.eissn=1573-2614&rft.coden=JCMCFG&rft_id=info:doi/10.1007/s10877-010-9248-y&rft_dat=%3Cproquest_cross%3E2115539391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746174912&rft_id=info:pmid/20644985&rfr_iscdi=true |