The thickness and chromatic number of r -inflated graphs

A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel’s famous Earth–Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r -inflation of G and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2010-10, Vol.310 (20), p.2725-2734
Hauptverfasser: Albertson, Michael O., Boutin, Debra L., Gethner, Ellen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2734
container_issue 20
container_start_page 2725
container_title Discrete mathematics
container_volume 310
creator Albertson, Michael O.
Boutin, Debra L.
Gethner, Ellen
description A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel’s famous Earth–Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r -inflation of G and find bounds on both the thickness and the chromatic number of the inflated graphs. In some instances, the best possible bounds on both the chromatic number and thickness are achieved. We end with several open problems.
doi_str_mv 10.1016/j.disc.2010.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822519399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10001524</els_id><sourcerecordid>822519399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-a75e5592c24ba6a279b363f816b22fc531ba8c1d3c2c9ff0a2bb3d4726676dfd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU-5eWpNJm2aghdZ_IIFLyvsLaTJxGbtx5p0Bf-9Xdazp2GG9xl4H0JuOMs54_Jum7uQbA5sPrAiZ7w-IQuuKsik4ptTsmCMQyZkuTknFylt2bxLoRZErVukUxvs54ApUTM4ats49mYKlg77vsFIR08jzcLgOzOhox_R7Np0Rc686RJe_81L8v70uF6-ZKu359flwyqzQsCUmarEsqzBQtEYaaCqGyGFV1w2AN6WgjdGWe6EBVt7zww0jXBFBVJW0nknLsnt8e8ujl97TJPu56bYdWbAcZ-0Aih5Lep6TsIxaeOYUkSvdzH0Jv5ozvTBkt7qgyV9sKRZoWdLM3R_hHDu8B0w6mQDDhZdiGgn7cbwH_4LHWZwBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822519399</pqid></control><display><type>article</type><title>The thickness and chromatic number of r -inflated graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Albertson, Michael O. ; Boutin, Debra L. ; Gethner, Ellen</creator><creatorcontrib>Albertson, Michael O. ; Boutin, Debra L. ; Gethner, Ellen</creatorcontrib><description>A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel’s famous Earth–Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r -inflation of G and find bounds on both the thickness and the chromatic number of the inflated graphs. In some instances, the best possible bounds on both the chromatic number and thickness are achieved. We end with several open problems.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.04.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-inflation ; Arboricity ; Chromatic number ; Decomposition ; Graph coloring ; Graphs ; Independence number ; Mathematical analysis ; Thickness</subject><ispartof>Discrete mathematics, 2010-10, Vol.310 (20), p.2725-2734</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-a75e5592c24ba6a279b363f816b22fc531ba8c1d3c2c9ff0a2bb3d4726676dfd3</citedby><cites>FETCH-LOGICAL-c332t-a75e5592c24ba6a279b363f816b22fc531ba8c1d3c2c9ff0a2bb3d4726676dfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012365X10001524$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Albertson, Michael O.</creatorcontrib><creatorcontrib>Boutin, Debra L.</creatorcontrib><creatorcontrib>Gethner, Ellen</creatorcontrib><title>The thickness and chromatic number of r -inflated graphs</title><title>Discrete mathematics</title><description>A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel’s famous Earth–Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r -inflation of G and find bounds on both the thickness and the chromatic number of the inflated graphs. In some instances, the best possible bounds on both the chromatic number and thickness are achieved. We end with several open problems.</description><subject>[formula omitted]-inflation</subject><subject>Arboricity</subject><subject>Chromatic number</subject><subject>Decomposition</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Independence number</subject><subject>Mathematical analysis</subject><subject>Thickness</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU-5eWpNJm2aghdZ_IIFLyvsLaTJxGbtx5p0Bf-9Xdazp2GG9xl4H0JuOMs54_Jum7uQbA5sPrAiZ7w-IQuuKsik4ptTsmCMQyZkuTknFylt2bxLoRZErVukUxvs54ApUTM4ats49mYKlg77vsFIR08jzcLgOzOhox_R7Np0Rc686RJe_81L8v70uF6-ZKu359flwyqzQsCUmarEsqzBQtEYaaCqGyGFV1w2AN6WgjdGWe6EBVt7zww0jXBFBVJW0nknLsnt8e8ujl97TJPu56bYdWbAcZ-0Aih5Lep6TsIxaeOYUkSvdzH0Jv5ozvTBkt7qgyV9sKRZoWdLM3R_hHDu8B0w6mQDDhZdiGgn7cbwH_4LHWZwBw</recordid><startdate>20101028</startdate><enddate>20101028</enddate><creator>Albertson, Michael O.</creator><creator>Boutin, Debra L.</creator><creator>Gethner, Ellen</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101028</creationdate><title>The thickness and chromatic number of r -inflated graphs</title><author>Albertson, Michael O. ; Boutin, Debra L. ; Gethner, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-a75e5592c24ba6a279b363f816b22fc531ba8c1d3c2c9ff0a2bb3d4726676dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-inflation</topic><topic>Arboricity</topic><topic>Chromatic number</topic><topic>Decomposition</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Independence number</topic><topic>Mathematical analysis</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albertson, Michael O.</creatorcontrib><creatorcontrib>Boutin, Debra L.</creatorcontrib><creatorcontrib>Gethner, Ellen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albertson, Michael O.</au><au>Boutin, Debra L.</au><au>Gethner, Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thickness and chromatic number of r -inflated graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2010-10-28</date><risdate>2010</risdate><volume>310</volume><issue>20</issue><spage>2725</spage><epage>2734</epage><pages>2725-2734</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel’s famous Earth–Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r -inflation of G and find bounds on both the thickness and the chromatic number of the inflated graphs. In some instances, the best possible bounds on both the chromatic number and thickness are achieved. We end with several open problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.04.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-10, Vol.310 (20), p.2725-2734
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_822519399
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects [formula omitted]-inflation
Arboricity
Chromatic number
Decomposition
Graph coloring
Graphs
Independence number
Mathematical analysis
Thickness
title The thickness and chromatic number of r -inflated graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thickness%20and%20chromatic%20number%20of%20r%20-inflated%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Albertson,%20Michael%20O.&rft.date=2010-10-28&rft.volume=310&rft.issue=20&rft.spage=2725&rft.epage=2734&rft.pages=2725-2734&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2010.04.019&rft_dat=%3Cproquest_cross%3E822519399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822519399&rft_id=info:pmid/&rft_els_id=S0012365X10001524&rfr_iscdi=true