A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations
Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010-11, Vol.73 (9), p.3116-3122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3122 |
---|---|
container_issue | 9 |
container_start_page | 3116 |
container_title | Nonlinear analysis |
container_volume | 73 |
creator | Gill, T.L. Zachary, W.W. |
description | Let
Ω
be an open domain of class
C
2
contained in
R
3
, let
L
2
(
Ω
)
3
be the Hilbert space of square integrable functions on
Ω
and let
H
[
Ω
]
≔
H
be the completion of the set,
{
u
∈
(
C
0
∞
[
Ω
]
)
3
∣
∇
⋅
u
=
0
}
, with respect to the inner product of
L
2
(
Ω
)
3
. A well-known unsolved problem is that of the construction of a sufficient class of functions in
H
which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for
H
, which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number
u
+
, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set
D
contained in the closed ball
B
(
Ω
)
≕
B
of radius
1
2
u
+
in
H
, the Navier–Stokes equations have unique, strong, solutions in
C
1
(
(
0
,
∞
)
,
H
)
. |
doi_str_mv | 10.1016/j.na.2010.06.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822519131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10004670</els_id><sourcerecordid>822519131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</originalsourceid><addsrcrecordid>eNp1kE2P0zAQhi0EEt3CnaMvK-CQMLZrJ3CrCruLVMGBD3GzHGcM7qZx15Mg9cZ_4B_ySzb90N44jUZ63nc0D2MvBJQChHmzKXtXSphWMCXU6hGbibpShZZCP2YzUEYWemF-PGUXRBsAEJUyM_Z9yWkMIfqIvd9z3zkiHlLmP7vUuI6_ij0f4hZfc0rdOMTUEx8SH34hV-_5J_c7Yv735--XId0icbwb3ZF5xp4E1xE-P885-3b14evqplh_vv64Wq4LL2sxFFKHagHgpVJNLULj3SJIY1QrvGzbxmiJTletxNaDrkAE0LVeBHQT5bQOas5ennp3Od2NSIPdRvLYda7HNJKtpdTirVBiIuFE-pyIMga7y3Hr8t4KsAeDdmN7Zw8GLRg7GZwil-dyR951IbveR3rISSWMqqWeuHcnDqdPD0IsHXViGzP6wbYp_v_IPQeDhbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822519131</pqid></control><display><type>article</type><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gill, T.L. ; Zachary, W.W.</creator><creatorcontrib>Gill, T.L. ; Zachary, W.W.</creatorcontrib><description>Let
Ω
be an open domain of class
C
2
contained in
R
3
, let
L
2
(
Ω
)
3
be the Hilbert space of square integrable functions on
Ω
and let
H
[
Ω
]
≔
H
be the completion of the set,
{
u
∈
(
C
0
∞
[
Ω
]
)
3
∣
∇
⋅
u
=
0
}
, with respect to the inner product of
L
2
(
Ω
)
3
. A well-known unsolved problem is that of the construction of a sufficient class of functions in
H
which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for
H
, which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number
u
+
, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set
D
contained in the closed ball
B
(
Ω
)
≕
B
of radius
1
2
u
+
in
H
, the Navier–Stokes equations have unique, strong, solutions in
C
1
(
(
0
,
∞
)
,
H
)
.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.06.083</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>3D Navier–Stokes equations ; Construction ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Functional analysis ; Global (in time) ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Mathematical analysis ; Mathematics ; Navier-Stokes equations ; Nonlinearity ; Partial differential equations ; Sciences and techniques of general use ; Stokes law (fluid mechanics) ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2010-11, Vol.73 (9), p.3116-3122</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10004670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23163825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gill, T.L.</creatorcontrib><creatorcontrib>Zachary, W.W.</creatorcontrib><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><title>Nonlinear analysis</title><description>Let
Ω
be an open domain of class
C
2
contained in
R
3
, let
L
2
(
Ω
)
3
be the Hilbert space of square integrable functions on
Ω
and let
H
[
Ω
]
≔
H
be the completion of the set,
{
u
∈
(
C
0
∞
[
Ω
]
)
3
∣
∇
⋅
u
=
0
}
, with respect to the inner product of
L
2
(
Ω
)
3
. A well-known unsolved problem is that of the construction of a sufficient class of functions in
H
which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for
H
, which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number
u
+
, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set
D
contained in the closed ball
B
(
Ω
)
≕
B
of radius
1
2
u
+
in
H
, the Navier–Stokes equations have unique, strong, solutions in
C
1
(
(
0
,
∞
)
,
H
)
.</description><subject>3D Navier–Stokes equations</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Functional analysis</subject><subject>Global (in time)</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Stokes law (fluid mechanics)</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE2P0zAQhi0EEt3CnaMvK-CQMLZrJ3CrCruLVMGBD3GzHGcM7qZx15Mg9cZ_4B_ySzb90N44jUZ63nc0D2MvBJQChHmzKXtXSphWMCXU6hGbibpShZZCP2YzUEYWemF-PGUXRBsAEJUyM_Z9yWkMIfqIvd9z3zkiHlLmP7vUuI6_ij0f4hZfc0rdOMTUEx8SH34hV-_5J_c7Yv735--XId0icbwb3ZF5xp4E1xE-P885-3b14evqplh_vv64Wq4LL2sxFFKHagHgpVJNLULj3SJIY1QrvGzbxmiJTletxNaDrkAE0LVeBHQT5bQOas5ennp3Od2NSIPdRvLYda7HNJKtpdTirVBiIuFE-pyIMga7y3Hr8t4KsAeDdmN7Zw8GLRg7GZwil-dyR951IbveR3rISSWMqqWeuHcnDqdPD0IsHXViGzP6wbYp_v_IPQeDhbY</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Gill, T.L.</creator><creator>Zachary, W.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><author>Gill, T.L. ; Zachary, W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D Navier–Stokes equations</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Functional analysis</topic><topic>Global (in time)</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Stokes law (fluid mechanics)</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gill, T.L.</creatorcontrib><creatorcontrib>Zachary, W.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gill, T.L.</au><au>Zachary, W.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>73</volume><issue>9</issue><spage>3116</spage><epage>3122</epage><pages>3116-3122</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let
Ω
be an open domain of class
C
2
contained in
R
3
, let
L
2
(
Ω
)
3
be the Hilbert space of square integrable functions on
Ω
and let
H
[
Ω
]
≔
H
be the completion of the set,
{
u
∈
(
C
0
∞
[
Ω
]
)
3
∣
∇
⋅
u
=
0
}
, with respect to the inner product of
L
2
(
Ω
)
3
. A well-known unsolved problem is that of the construction of a sufficient class of functions in
H
which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for
H
, which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number
u
+
, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set
D
contained in the closed ball
B
(
Ω
)
≕
B
of radius
1
2
u
+
in
H
, the Navier–Stokes equations have unique, strong, solutions in
C
1
(
(
0
,
∞
)
,
H
)
.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.06.083</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2010-11, Vol.73 (9), p.3116-3122 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_822519131 |
source | Elsevier ScienceDirect Journals |
subjects | 3D Navier–Stokes equations Construction Exact sciences and technology Fluid dynamics Fluid flow Functional analysis Global (in time) Global analysis, analysis on manifolds Group theory Group theory and generalizations Mathematical analysis Mathematics Navier-Stokes equations Nonlinearity Partial differential equations Sciences and techniques of general use Stokes law (fluid mechanics) Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sufficiency%20class%20for%20global%20(in%20time)%20solutions%20to%20the%203D%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Gill,%20T.L.&rft.date=2010-11-01&rft.volume=73&rft.issue=9&rft.spage=3116&rft.epage=3122&rft.pages=3116-3122&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.06.083&rft_dat=%3Cproquest_cross%3E822519131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822519131&rft_id=info:pmid/&rft_els_id=S0362546X10004670&rfr_iscdi=true |