A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations

Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010-11, Vol.73 (9), p.3116-3122
Hauptverfasser: Gill, T.L., Zachary, W.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3122
container_issue 9
container_start_page 3116
container_title Nonlinear analysis
container_volume 73
creator Gill, T.L.
Zachary, W.W.
description Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem is that of the construction of a sufficient class of functions in H which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for H , which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number u + , depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set D contained in the closed ball B ( Ω ) ≕ B of radius 1 2 u + in H , the Navier–Stokes equations have unique, strong, solutions in C 1 ( ( 0 , ∞ ) , H ) .
doi_str_mv 10.1016/j.na.2010.06.083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822519131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10004670</els_id><sourcerecordid>822519131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</originalsourceid><addsrcrecordid>eNp1kE2P0zAQhi0EEt3CnaMvK-CQMLZrJ3CrCruLVMGBD3GzHGcM7qZx15Mg9cZ_4B_ySzb90N44jUZ63nc0D2MvBJQChHmzKXtXSphWMCXU6hGbibpShZZCP2YzUEYWemF-PGUXRBsAEJUyM_Z9yWkMIfqIvd9z3zkiHlLmP7vUuI6_ij0f4hZfc0rdOMTUEx8SH34hV-_5J_c7Yv735--XId0icbwb3ZF5xp4E1xE-P885-3b14evqplh_vv64Wq4LL2sxFFKHagHgpVJNLULj3SJIY1QrvGzbxmiJTletxNaDrkAE0LVeBHQT5bQOas5ennp3Od2NSIPdRvLYda7HNJKtpdTirVBiIuFE-pyIMga7y3Hr8t4KsAeDdmN7Zw8GLRg7GZwil-dyR951IbveR3rISSWMqqWeuHcnDqdPD0IsHXViGzP6wbYp_v_IPQeDhbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822519131</pqid></control><display><type>article</type><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gill, T.L. ; Zachary, W.W.</creator><creatorcontrib>Gill, T.L. ; Zachary, W.W.</creatorcontrib><description>Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem is that of the construction of a sufficient class of functions in H which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for H , which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number u + , depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set D contained in the closed ball B ( Ω ) ≕ B of radius 1 2 u + in H , the Navier–Stokes equations have unique, strong, solutions in C 1 ( ( 0 , ∞ ) , H ) .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.06.083</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>3D Navier–Stokes equations ; Construction ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Functional analysis ; Global (in time) ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Mathematical analysis ; Mathematics ; Navier-Stokes equations ; Nonlinearity ; Partial differential equations ; Sciences and techniques of general use ; Stokes law (fluid mechanics) ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2010-11, Vol.73 (9), p.3116-3122</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10004670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23163825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gill, T.L.</creatorcontrib><creatorcontrib>Zachary, W.W.</creatorcontrib><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><title>Nonlinear analysis</title><description>Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem is that of the construction of a sufficient class of functions in H which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for H , which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number u + , depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set D contained in the closed ball B ( Ω ) ≕ B of radius 1 2 u + in H , the Navier–Stokes equations have unique, strong, solutions in C 1 ( ( 0 , ∞ ) , H ) .</description><subject>3D Navier–Stokes equations</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Functional analysis</subject><subject>Global (in time)</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Stokes law (fluid mechanics)</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE2P0zAQhi0EEt3CnaMvK-CQMLZrJ3CrCruLVMGBD3GzHGcM7qZx15Mg9cZ_4B_ySzb90N44jUZ63nc0D2MvBJQChHmzKXtXSphWMCXU6hGbibpShZZCP2YzUEYWemF-PGUXRBsAEJUyM_Z9yWkMIfqIvd9z3zkiHlLmP7vUuI6_ij0f4hZfc0rdOMTUEx8SH34hV-_5J_c7Yv735--XId0icbwb3ZF5xp4E1xE-P885-3b14evqplh_vv64Wq4LL2sxFFKHagHgpVJNLULj3SJIY1QrvGzbxmiJTletxNaDrkAE0LVeBHQT5bQOas5ennp3Od2NSIPdRvLYda7HNJKtpdTirVBiIuFE-pyIMga7y3Hr8t4KsAeDdmN7Zw8GLRg7GZwil-dyR951IbveR3rISSWMqqWeuHcnDqdPD0IsHXViGzP6wbYp_v_IPQeDhbY</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Gill, T.L.</creator><creator>Zachary, W.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</title><author>Gill, T.L. ; Zachary, W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-25f7400c233b81fbca4f2663d1c2ddb652ea57d2edc05701f05854feaf26a55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D Navier–Stokes equations</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Functional analysis</topic><topic>Global (in time)</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Stokes law (fluid mechanics)</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gill, T.L.</creatorcontrib><creatorcontrib>Zachary, W.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gill, T.L.</au><au>Zachary, W.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>73</volume><issue>9</issue><spage>3116</spage><epage>3122</epage><pages>3116-3122</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let Ω be an open domain of class C 2 contained in R 3 , let L 2 ( Ω ) 3 be the Hilbert space of square integrable functions on Ω and let H [ Ω ] ≔ H be the completion of the set, { u ∈ ( C 0 ∞ [ Ω ] ) 3 ∣ ∇ ⋅ u = 0 } , with respect to the inner product of L 2 ( Ω ) 3 . A well-known unsolved problem is that of the construction of a sufficient class of functions in H which will allow global, in time, strong solutions to the three-dimensional Navier–Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for H , which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number u + , depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set D contained in the closed ball B ( Ω ) ≕ B of radius 1 2 u + in H , the Navier–Stokes equations have unique, strong, solutions in C 1 ( ( 0 , ∞ ) , H ) .</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.06.083</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2010-11, Vol.73 (9), p.3116-3122
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_822519131
source Elsevier ScienceDirect Journals
subjects 3D Navier–Stokes equations
Construction
Exact sciences and technology
Fluid dynamics
Fluid flow
Functional analysis
Global (in time)
Global analysis, analysis on manifolds
Group theory
Group theory and generalizations
Mathematical analysis
Mathematics
Navier-Stokes equations
Nonlinearity
Partial differential equations
Sciences and techniques of general use
Stokes law (fluid mechanics)
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title A sufficiency class for global (in time) solutions to the 3D Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sufficiency%20class%20for%20global%20(in%20time)%20solutions%20to%20the%203D%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Gill,%20T.L.&rft.date=2010-11-01&rft.volume=73&rft.issue=9&rft.spage=3116&rft.epage=3122&rft.pages=3116-3122&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.06.083&rft_dat=%3Cproquest_cross%3E822519131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822519131&rft_id=info:pmid/&rft_els_id=S0362546X10004670&rfr_iscdi=true