Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts

This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution. This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2005-06, Vol.7 (2), p.149-159
Hauptverfasser: Davis, Richard A., Dunsmuir, William T. M., Streett, Sarah B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 149
container_title Methodology and computing in applied probability
container_volume 7
creator Davis, Richard A.
Dunsmuir, William T. M.
Streett, Sarah B.
description This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution. This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation to the likelihood function. Recursive formulae for carrying out maximum likelihood estimation are provided and the technical components required for establishing a central limit theorem of the maximum likelihood estimates are given in a special case. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11009-005-1480-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_822511192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>870880081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-36949522d2d3a20e6a7eea1babe63a2a83453f4bf50b9f7f85b9dda813b1c9a63</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwAewiNqwMHj8SZ4lKeUit2gWsLSexhUsSFzup4O8xhBWrO5p7NBodhC6B3AAhxW2EFCUmRGDgkmB-hGYgCoaLAthxmpkssJAcTtFZjDtCKAjGZ2i71p-uG7ts5d5N6968b7JlHFynB-f7zPqQ6T7bVNGEw7S6D-5g-mztG9P-9lvvYkzFwo_9EM_RidVtNBd_OUevD8uXxRNebR6fF3crXDPCB8zykpeC0oY2TFNicl0Yo6HSlcnTQkvGBbO8soJUpS2sFFXZNFoCq6Audc7m6Hq6uw_-YzRxUJ2LtWlb3Rs_RiUpFQBQ0kRe_SN3fgx9ek5RwiUngkOCYILq4GMMxqp9SBLClwKifgyrybBKhtWPYcXZNzcmbkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204840541</pqid></control><display><type>article</type><title>Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</creator><creatorcontrib>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</creatorcontrib><description>This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution. This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation to the likelihood function. Recursive formulae for carrying out maximum likelihood estimation are provided and the technical components required for establishing a central limit theorem of the maximum likelihood estimates are given in a special case. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-005-1480-4</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Approximation ; Counting ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimates ; Maximum likelihood estimation ; Recursive ; Studies ; Time series</subject><ispartof>Methodology and computing in applied probability, 2005-06, Vol.7 (2), p.149-159</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-36949522d2d3a20e6a7eea1babe63a2a83453f4bf50b9f7f85b9dda813b1c9a63</citedby><cites>FETCH-LOGICAL-c304t-36949522d2d3a20e6a7eea1babe63a2a83453f4bf50b9f7f85b9dda813b1c9a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Davis, Richard A.</creatorcontrib><creatorcontrib>Dunsmuir, William T. M.</creatorcontrib><creatorcontrib>Streett, Sarah B.</creatorcontrib><title>Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts</title><title>Methodology and computing in applied probability</title><description>This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution. This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation to the likelihood function. Recursive formulae for carrying out maximum likelihood estimation are provided and the technical components required for establishing a central limit theorem of the maximum likelihood estimates are given in a special case. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Counting</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Recursive</subject><subject>Studies</subject><subject>Time series</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwAewiNqwMHj8SZ4lKeUit2gWsLSexhUsSFzup4O8xhBWrO5p7NBodhC6B3AAhxW2EFCUmRGDgkmB-hGYgCoaLAthxmpkssJAcTtFZjDtCKAjGZ2i71p-uG7ts5d5N6968b7JlHFynB-f7zPqQ6T7bVNGEw7S6D-5g-mztG9P-9lvvYkzFwo_9EM_RidVtNBd_OUevD8uXxRNebR6fF3crXDPCB8zykpeC0oY2TFNicl0Yo6HSlcnTQkvGBbO8soJUpS2sFFXZNFoCq6Audc7m6Hq6uw_-YzRxUJ2LtWlb3Rs_RiUpFQBQ0kRe_SN3fgx9ek5RwiUngkOCYILq4GMMxqp9SBLClwKifgyrybBKhtWPYcXZNzcmbkI</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Davis, Richard A.</creator><creator>Dunsmuir, William T. M.</creator><creator>Streett, Sarah B.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts</title><author>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-36949522d2d3a20e6a7eea1babe63a2a83453f4bf50b9f7f85b9dda813b1c9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Counting</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Recursive</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Richard A.</creatorcontrib><creatorcontrib>Dunsmuir, William T. M.</creatorcontrib><creatorcontrib>Streett, Sarah B.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Richard A.</au><au>Dunsmuir, William T. M.</au><au>Streett, Sarah B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts</atitle><jtitle>Methodology and computing in applied probability</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>7</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution. This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation to the likelihood function. Recursive formulae for carrying out maximum likelihood estimation are provided and the technical components required for establishing a central limit theorem of the maximum likelihood estimates are given in a special case. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11009-005-1480-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2005-06, Vol.7 (2), p.149-159
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_miscellaneous_822511192
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Approximation
Counting
Mathematical analysis
Mathematical models
Maximum likelihood estimates
Maximum likelihood estimation
Recursive
Studies
Time series
title Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Likelihood%20Estimation%20for%20an%20Observation%20Driven%20Model%20for%20Poisson%20Counts&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Davis,%20Richard%20A.&rft.date=2005-06-01&rft.volume=7&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-005-1480-4&rft_dat=%3Cproquest_cross%3E870880081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204840541&rft_id=info:pmid/&rfr_iscdi=true