Negative Differential Resistance in C60-Based Electronic Devices
Unlike single-C60-based devices, molecular assemblies based on two or more appropriately connected C60 molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C60 molecules connected b...
Gespeichert in:
Veröffentlicht in: | ACS nano 2010-12, Vol.4 (12), p.7205-7210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7210 |
---|---|
container_issue | 12 |
container_start_page | 7205 |
container_title | ACS nano |
container_volume | 4 |
creator | Zheng, Xiaohong Lu, Wenchang Abtew, Tesfaye A Meunier, Vincent Bernholc, Jerry |
description | Unlike single-C60-based devices, molecular assemblies based on two or more appropriately connected C60 molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C60 molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C60, as in the case of a single-C60-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C60 molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C60-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors. |
doi_str_mv | 10.1021/nn101902r |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_821595904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821595904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a155t-61814f31dc0cd914eede3ac6fea21bb14593af2f25dae5d29ea54f589c14a67d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMotlYPfgHZi3hazctutpub2tY_UBREwVt4TV4kZZutm92C396V1p5mDj-GmWHsHPg1cAE3IQAHxUVzwIagsiLlZfF5uPcSBuwkxiXnclyOi2M2EMBLUQoYstsX-sLWbyiZeueoodB6rJI3ij62GAwlPiSTgqf3GMkms4pM29TBm2RKG28onrIjh1Wks52O2MfD7H3ylM5fH58nd_MUQco2LaCE3GVgDTdWQU5kKUNTOEIBiwXkUmXohBPSIkkrFKHMnSyVgRyLsc1G7Gqbu27q745iq1c-GqoqDFR3UfdrpJKK5z15sSO7xYqsXjd-hc2P_h_dA5dbAE3Uy7prQl9cA9d_Z-r9mdkvPEVjew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821595904</pqid></control><display><type>article</type><title>Negative Differential Resistance in C60-Based Electronic Devices</title><source>American Chemical Society Journals</source><creator>Zheng, Xiaohong ; Lu, Wenchang ; Abtew, Tesfaye A ; Meunier, Vincent ; Bernholc, Jerry</creator><creatorcontrib>Zheng, Xiaohong ; Lu, Wenchang ; Abtew, Tesfaye A ; Meunier, Vincent ; Bernholc, Jerry</creatorcontrib><description>Unlike single-C60-based devices, molecular assemblies based on two or more appropriately connected C60 molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C60 molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C60, as in the case of a single-C60-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C60 molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C60-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn101902r</identifier><identifier>PMID: 21082821</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2010-12, Vol.4 (12), p.7205-7210</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn101902r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn101902r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21082821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Lu, Wenchang</creatorcontrib><creatorcontrib>Abtew, Tesfaye A</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Bernholc, Jerry</creatorcontrib><title>Negative Differential Resistance in C60-Based Electronic Devices</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Unlike single-C60-based devices, molecular assemblies based on two or more appropriately connected C60 molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C60 molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C60, as in the case of a single-C60-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C60 molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C60-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMotlYPfgHZi3hazctutpub2tY_UBREwVt4TV4kZZutm92C396V1p5mDj-GmWHsHPg1cAE3IQAHxUVzwIagsiLlZfF5uPcSBuwkxiXnclyOi2M2EMBLUQoYstsX-sLWbyiZeueoodB6rJI3ij62GAwlPiSTgqf3GMkms4pM29TBm2RKG28onrIjh1Wks52O2MfD7H3ylM5fH58nd_MUQco2LaCE3GVgDTdWQU5kKUNTOEIBiwXkUmXohBPSIkkrFKHMnSyVgRyLsc1G7Gqbu27q745iq1c-GqoqDFR3UfdrpJKK5z15sSO7xYqsXjd-hc2P_h_dA5dbAE3Uy7prQl9cA9d_Z-r9mdkvPEVjew</recordid><startdate>20101228</startdate><enddate>20101228</enddate><creator>Zheng, Xiaohong</creator><creator>Lu, Wenchang</creator><creator>Abtew, Tesfaye A</creator><creator>Meunier, Vincent</creator><creator>Bernholc, Jerry</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20101228</creationdate><title>Negative Differential Resistance in C60-Based Electronic Devices</title><author>Zheng, Xiaohong ; Lu, Wenchang ; Abtew, Tesfaye A ; Meunier, Vincent ; Bernholc, Jerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a155t-61814f31dc0cd914eede3ac6fea21bb14593af2f25dae5d29ea54f589c14a67d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Lu, Wenchang</creatorcontrib><creatorcontrib>Abtew, Tesfaye A</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Bernholc, Jerry</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaohong</au><au>Lu, Wenchang</au><au>Abtew, Tesfaye A</au><au>Meunier, Vincent</au><au>Bernholc, Jerry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Differential Resistance in C60-Based Electronic Devices</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-12-28</date><risdate>2010</risdate><volume>4</volume><issue>12</issue><spage>7205</spage><epage>7210</epage><pages>7205-7210</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Unlike single-C60-based devices, molecular assemblies based on two or more appropriately connected C60 molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C60 molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C60, as in the case of a single-C60-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C60 molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C60-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21082821</pmid><doi>10.1021/nn101902r</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2010-12, Vol.4 (12), p.7205-7210 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_821595904 |
source | American Chemical Society Journals |
title | Negative Differential Resistance in C60-Based Electronic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Differential%20Resistance%20in%20C60-Based%20Electronic%20Devices&rft.jtitle=ACS%20nano&rft.au=Zheng,%20Xiaohong&rft.date=2010-12-28&rft.volume=4&rft.issue=12&rft.spage=7205&rft.epage=7210&rft.pages=7205-7210&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn101902r&rft_dat=%3Cproquest_pubme%3E821595904%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821595904&rft_id=info:pmid/21082821&rfr_iscdi=true |