Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif

Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-12, Vol.26 (24), p.18945-18950
Hauptverfasser: Reed, Alison M. W, Metallo, Steven J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18950
container_issue 24
container_start_page 18945
container_title Langmuir
container_volume 26
creator Reed, Alison M. W
Metallo, Steven J
description Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.
doi_str_mv 10.1021/la1035135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_821487478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821487478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</originalsourceid><addsrcrecordid>eNpt0D1PHDEQgGErSgQHocgfiNxEEcUm_l67JAguSMClgHrls2fByGdfbG_Bv2cjLkdDNdLo0Yz0IvSFkh-UMPozWkq4pFx-QAsqGemkZv1HtCC94F0vFD9ER7U-EUIMF-YAHTJKqWDKLNCwKgFSA4__lNwgJHzmay7bFnLCLeNljh7f2pS3trTgIlTcHkueHh6xxUtIMC9tjM_4Irns7ToC_hWSD-kB3-QWxs_o02hjhZPdPEb3lxd357-769Xy6vzsurOCktZxJZUydvSjoFYwcKCFJKJfc2McGYkyhrLRCyO59sZIbUEJxbgAtfa-d_wYfX-9uy357wS1DZtQHcRoE-SpDppRoXvR61mevkpXcq0FxmFbwsaW54GS4V_OYZ9ztl93V6f1Bvxe_u83g287YOvcYSw2uVDfHFe651q-Oevq8JSnkuYY7zx8ATyxh7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821487478</pqid></control><display><type>article</type><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Reed, Alison M. W ; Metallo, Steven J</creator><creatorcontrib>Reed, Alison M. W ; Metallo, Steven J</creatorcontrib><description>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la1035135</identifier><identifier>PMID: 21114269</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials ; Cattle ; Chemistry ; Colloidal state and disperse state ; Cysteine - chemistry ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Models, Molecular ; Molecular Sequence Data ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Protein Binding ; Protein Conformation ; Protein Engineering - methods ; Surface physical chemistry ; Surface Properties ; Ubiquitin - chemistry ; Ubiquitin - genetics</subject><ispartof>Langmuir, 2010-12, Vol.26 (24), p.18945-18950</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la1035135$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la1035135$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23687385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21114269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed, Alison M. W</creatorcontrib><creatorcontrib>Metallo, Steven J</creatorcontrib><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</description><subject>Adsorption</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</subject><subject>Cattle</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Cysteine - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PHDEQgGErSgQHocgfiNxEEcUm_l67JAguSMClgHrls2fByGdfbG_Bv2cjLkdDNdLo0Yz0IvSFkh-UMPozWkq4pFx-QAsqGemkZv1HtCC94F0vFD9ER7U-EUIMF-YAHTJKqWDKLNCwKgFSA4__lNwgJHzmay7bFnLCLeNljh7f2pS3trTgIlTcHkueHh6xxUtIMC9tjM_4Irns7ToC_hWSD-kB3-QWxs_o02hjhZPdPEb3lxd357-769Xy6vzsurOCktZxJZUydvSjoFYwcKCFJKJfc2McGYkyhrLRCyO59sZIbUEJxbgAtfa-d_wYfX-9uy357wS1DZtQHcRoE-SpDppRoXvR61mevkpXcq0FxmFbwsaW54GS4V_OYZ9ztl93V6f1Bvxe_u83g287YOvcYSw2uVDfHFe651q-Oevq8JSnkuYY7zx8ATyxh7k</recordid><startdate>20101221</startdate><enddate>20101221</enddate><creator>Reed, Alison M. W</creator><creator>Metallo, Steven J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101221</creationdate><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><author>Reed, Alison M. W ; Metallo, Steven J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</topic><topic>Cattle</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Cysteine - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, Alison M. W</creatorcontrib><creatorcontrib>Metallo, Steven J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, Alison M. W</au><au>Metallo, Steven J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-12-21</date><risdate>2010</risdate><volume>26</volume><issue>24</issue><spage>18945</spage><epage>18950</epage><pages>18945-18950</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21114269</pmid><doi>10.1021/la1035135</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-12, Vol.26 (24), p.18945-18950
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_821487478
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Amino Acid Motifs
Amino Acid Sequence
Animals
Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials
Cattle
Chemistry
Colloidal state and disperse state
Cysteine - chemistry
Exact sciences and technology
General and physical chemistry
Gold - chemistry
Metal Nanoparticles - chemistry
Models, Molecular
Molecular Sequence Data
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Protein Binding
Protein Conformation
Protein Engineering - methods
Surface physical chemistry
Surface Properties
Ubiquitin - chemistry
Ubiquitin - genetics
title Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Protein%20Adsorption%20to%20Gold%20Nanoparticles%20through%20a%20Genetically%20Encodable%20Binding%20Motif&rft.jtitle=Langmuir&rft.au=Reed,%20Alison%20M.%20W&rft.date=2010-12-21&rft.volume=26&rft.issue=24&rft.spage=18945&rft.epage=18950&rft.pages=18945-18950&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la1035135&rft_dat=%3Cproquest_cross%3E821487478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821487478&rft_id=info:pmid/21114269&rfr_iscdi=true