Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif
Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gol...
Gespeichert in:
Veröffentlicht in: | Langmuir 2010-12, Vol.26 (24), p.18945-18950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18950 |
---|---|
container_issue | 24 |
container_start_page | 18945 |
container_title | Langmuir |
container_volume | 26 |
creator | Reed, Alison M. W Metallo, Steven J |
description | Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets. |
doi_str_mv | 10.1021/la1035135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_821487478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821487478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</originalsourceid><addsrcrecordid>eNpt0D1PHDEQgGErSgQHocgfiNxEEcUm_l67JAguSMClgHrls2fByGdfbG_Bv2cjLkdDNdLo0Yz0IvSFkh-UMPozWkq4pFx-QAsqGemkZv1HtCC94F0vFD9ER7U-EUIMF-YAHTJKqWDKLNCwKgFSA4__lNwgJHzmay7bFnLCLeNljh7f2pS3trTgIlTcHkueHh6xxUtIMC9tjM_4Irns7ToC_hWSD-kB3-QWxs_o02hjhZPdPEb3lxd357-769Xy6vzsurOCktZxJZUydvSjoFYwcKCFJKJfc2McGYkyhrLRCyO59sZIbUEJxbgAtfa-d_wYfX-9uy357wS1DZtQHcRoE-SpDppRoXvR61mevkpXcq0FxmFbwsaW54GS4V_OYZ9ztl93V6f1Bvxe_u83g287YOvcYSw2uVDfHFe651q-Oevq8JSnkuYY7zx8ATyxh7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821487478</pqid></control><display><type>article</type><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Reed, Alison M. W ; Metallo, Steven J</creator><creatorcontrib>Reed, Alison M. W ; Metallo, Steven J</creatorcontrib><description>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la1035135</identifier><identifier>PMID: 21114269</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials ; Cattle ; Chemistry ; Colloidal state and disperse state ; Cysteine - chemistry ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Models, Molecular ; Molecular Sequence Data ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Protein Binding ; Protein Conformation ; Protein Engineering - methods ; Surface physical chemistry ; Surface Properties ; Ubiquitin - chemistry ; Ubiquitin - genetics</subject><ispartof>Langmuir, 2010-12, Vol.26 (24), p.18945-18950</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la1035135$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la1035135$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23687385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21114269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed, Alison M. W</creatorcontrib><creatorcontrib>Metallo, Steven J</creatorcontrib><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</description><subject>Adsorption</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</subject><subject>Cattle</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Cysteine - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PHDEQgGErSgQHocgfiNxEEcUm_l67JAguSMClgHrls2fByGdfbG_Bv2cjLkdDNdLo0Yz0IvSFkh-UMPozWkq4pFx-QAsqGemkZv1HtCC94F0vFD9ER7U-EUIMF-YAHTJKqWDKLNCwKgFSA4__lNwgJHzmay7bFnLCLeNljh7f2pS3trTgIlTcHkueHh6xxUtIMC9tjM_4Irns7ToC_hWSD-kB3-QWxs_o02hjhZPdPEb3lxd357-769Xy6vzsurOCktZxJZUydvSjoFYwcKCFJKJfc2McGYkyhrLRCyO59sZIbUEJxbgAtfa-d_wYfX-9uy357wS1DZtQHcRoE-SpDppRoXvR61mevkpXcq0FxmFbwsaW54GS4V_OYZ9ztl93V6f1Bvxe_u83g287YOvcYSw2uVDfHFe651q-Oevq8JSnkuYY7zx8ATyxh7k</recordid><startdate>20101221</startdate><enddate>20101221</enddate><creator>Reed, Alison M. W</creator><creator>Metallo, Steven J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101221</creationdate><title>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</title><author>Reed, Alison M. W ; Metallo, Steven J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-365669afdf41a42ece845047b399c0f069912fd49538d9958ae646234e6bdd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</topic><topic>Cattle</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Cysteine - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, Alison M. W</creatorcontrib><creatorcontrib>Metallo, Steven J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, Alison M. W</au><au>Metallo, Steven J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-12-21</date><risdate>2010</risdate><volume>26</volume><issue>24</issue><spage>18945</spage><epage>18950</epage><pages>18945-18950</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein−NP conjugates to immobilized targets.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21114269</pmid><doi>10.1021/la1035135</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2010-12, Vol.26 (24), p.18945-18950 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_821487478 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Amino Acid Motifs Amino Acid Sequence Animals Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials Cattle Chemistry Colloidal state and disperse state Cysteine - chemistry Exact sciences and technology General and physical chemistry Gold - chemistry Metal Nanoparticles - chemistry Models, Molecular Molecular Sequence Data Physical and chemical studies. Granulometry. Electrokinetic phenomena Protein Binding Protein Conformation Protein Engineering - methods Surface physical chemistry Surface Properties Ubiquitin - chemistry Ubiquitin - genetics |
title | Oriented Protein Adsorption to Gold Nanoparticles through a Genetically Encodable Binding Motif |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Protein%20Adsorption%20to%20Gold%20Nanoparticles%20through%20a%20Genetically%20Encodable%20Binding%20Motif&rft.jtitle=Langmuir&rft.au=Reed,%20Alison%20M.%20W&rft.date=2010-12-21&rft.volume=26&rft.issue=24&rft.spage=18945&rft.epage=18950&rft.pages=18945-18950&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la1035135&rft_dat=%3Cproquest_cross%3E821487478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821487478&rft_id=info:pmid/21114269&rfr_iscdi=true |