The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism

Summary Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo‐inhibition (the malate valve). It was previously shown that the Arabidop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2011-01, Vol.65 (1), p.15-26
Hauptverfasser: Kinoshita, Hiromu, Nagasaki, Junko, Yoshikawa, Nanako, Yamamoto, Aya, Takito, Shizuka, Kawasaki, Michio, Sugiyama, Tatsuo, Miyake, Hiroshi, Weber, Andreas P. M., Taniguchi, Mitsutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 15
container_title The Plant journal : for cell and molecular biology
container_volume 65
creator Kinoshita, Hiromu
Nagasaki, Junko
Yoshikawa, Nanako
Yamamoto, Aya
Takito, Shizuka
Kawasaki, Michio
Sugiyama, Tatsuo
Miyake, Hiroshi
Weber, Andreas P. M.
Taniguchi, Mitsutaka
description Summary Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo‐inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2‐oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T‐DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO2‐dependent O2 evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high‐affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo‐inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2‐oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi‐functionally as an oxaloacetate/malate transporter in the malate valve and as a 2‐oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.
doi_str_mv 10.1111/j.1365-313X.2010.04397.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_821197105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220437711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5467-7b2386d47513129082be22a48714ab8a7a6d92f61de9fc2a7c23c8ae6c6d411a3</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhYMoTjv6ChIEcdXd-alKUgsXMvjLgC5acBdupVLT1aSSNknN9CwEH8Fn9ElM2e0Irszmhnu_c7jcgxCmZEXLW-9WlIt6ySn_smKkdEnFG7k63EOLu8F9tCCNIEtZUXaGHqW0I4RKLqqH6IxRKmulxAJ922wtNlsXYtg7SHkwmP38_iMcwpWbMkTIdj2CKwXnCD7tQ8w24i0k3E3gcD95k4fgcWnkYnVir8FdWwy-w4PHBmIb_NoPOYYr6_FoM7TBDWl8jB704JJ9cqrn6POb15uLd8vLj2_fX7y6XJq6EnIpW8aV6CpZU05ZQxRrLWNQKUkraBVIEF3DekE72_SGgTSMGwVWmCKiFPg5enH03cfwdbIp63FIxjoH3oYpaVUO0khK6kI--4fchSn6slyBiJKKKFUgdYRMDClF2-t9HEaIt5oSPQekd3rOQc856Dkg_TsgfSjSpyf_qR1tdyf8k0gBnp8ASAZcX45uhvSX40KJWvHCvTxyN4Ozt_-9gN58-jD_-C-GM655</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820878088</pqid></control><display><type>article</type><title>The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kinoshita, Hiromu ; Nagasaki, Junko ; Yoshikawa, Nanako ; Yamamoto, Aya ; Takito, Shizuka ; Kawasaki, Michio ; Sugiyama, Tatsuo ; Miyake, Hiroshi ; Weber, Andreas P. M. ; Taniguchi, Mitsutaka</creator><creatorcontrib>Kinoshita, Hiromu ; Nagasaki, Junko ; Yoshikawa, Nanako ; Yamamoto, Aya ; Takito, Shizuka ; Kawasaki, Michio ; Sugiyama, Tatsuo ; Miyake, Hiroshi ; Weber, Andreas P. M. ; Taniguchi, Mitsutaka</creatorcontrib><description>Summary Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo‐inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2‐oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T‐DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO2‐dependent O2 evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high‐affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo‐inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2‐oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi‐functionally as an oxaloacetate/malate transporter in the malate valve and as a 2‐oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2010.04397.x</identifier><identifier>PMID: 21175886</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>2‐oxoglutarate/malate transporter ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Carbon ; Carbon - metabolism ; Chlorophyll - metabolism ; chloroplast ; Chloroplasts - metabolism ; Dicarboxylic Acid Transporters - metabolism ; Fundamental and applied biological sciences. Psychology ; malate valve ; Malates - metabolism ; Metabolism ; Metabolism. Physicochemical requirements ; Nitrogen ; Nitrogen - metabolism ; photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; Plant physiology and development ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Reverse Transcriptase Polymerase Chain Reaction</subject><ispartof>The Plant journal : for cell and molecular biology, 2011-01, Vol.65 (1), p.15-26</ispartof><rights>2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5467-7b2386d47513129082be22a48714ab8a7a6d92f61de9fc2a7c23c8ae6c6d411a3</citedby><cites>FETCH-LOGICAL-c5467-7b2386d47513129082be22a48714ab8a7a6d92f61de9fc2a7c23c8ae6c6d411a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2010.04397.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2010.04397.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23686583$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21175886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinoshita, Hiromu</creatorcontrib><creatorcontrib>Nagasaki, Junko</creatorcontrib><creatorcontrib>Yoshikawa, Nanako</creatorcontrib><creatorcontrib>Yamamoto, Aya</creatorcontrib><creatorcontrib>Takito, Shizuka</creatorcontrib><creatorcontrib>Kawasaki, Michio</creatorcontrib><creatorcontrib>Sugiyama, Tatsuo</creatorcontrib><creatorcontrib>Miyake, Hiroshi</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><creatorcontrib>Taniguchi, Mitsutaka</creatorcontrib><title>The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo‐inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2‐oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T‐DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO2‐dependent O2 evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high‐affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo‐inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2‐oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi‐functionally as an oxaloacetate/malate transporter in the malate valve and as a 2‐oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.</description><subject>2‐oxoglutarate/malate transporter</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>chloroplast</subject><subject>Chloroplasts - metabolism</subject><subject>Dicarboxylic Acid Transporters - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>malate valve</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2KFDEUhYMoTjv6ChIEcdXd-alKUgsXMvjLgC5acBdupVLT1aSSNknN9CwEH8Fn9ElM2e0Irszmhnu_c7jcgxCmZEXLW-9WlIt6ySn_smKkdEnFG7k63EOLu8F9tCCNIEtZUXaGHqW0I4RKLqqH6IxRKmulxAJ922wtNlsXYtg7SHkwmP38_iMcwpWbMkTIdj2CKwXnCD7tQ8w24i0k3E3gcD95k4fgcWnkYnVir8FdWwy-w4PHBmIb_NoPOYYr6_FoM7TBDWl8jB704JJ9cqrn6POb15uLd8vLj2_fX7y6XJq6EnIpW8aV6CpZU05ZQxRrLWNQKUkraBVIEF3DekE72_SGgTSMGwVWmCKiFPg5enH03cfwdbIp63FIxjoH3oYpaVUO0khK6kI--4fchSn6slyBiJKKKFUgdYRMDClF2-t9HEaIt5oSPQekd3rOQc856Dkg_TsgfSjSpyf_qR1tdyf8k0gBnp8ASAZcX45uhvSX40KJWvHCvTxyN4Ozt_-9gN58-jD_-C-GM655</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Kinoshita, Hiromu</creator><creator>Nagasaki, Junko</creator><creator>Yoshikawa, Nanako</creator><creator>Yamamoto, Aya</creator><creator>Takito, Shizuka</creator><creator>Kawasaki, Michio</creator><creator>Sugiyama, Tatsuo</creator><creator>Miyake, Hiroshi</creator><creator>Weber, Andreas P. M.</creator><creator>Taniguchi, Mitsutaka</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism</title><author>Kinoshita, Hiromu ; Nagasaki, Junko ; Yoshikawa, Nanako ; Yamamoto, Aya ; Takito, Shizuka ; Kawasaki, Michio ; Sugiyama, Tatsuo ; Miyake, Hiroshi ; Weber, Andreas P. M. ; Taniguchi, Mitsutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5467-7b2386d47513129082be22a48714ab8a7a6d92f61de9fc2a7c23c8ae6c6d411a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2‐oxoglutarate/malate transporter</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>chloroplast</topic><topic>Chloroplasts - metabolism</topic><topic>Dicarboxylic Acid Transporters - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>malate valve</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Hiromu</creatorcontrib><creatorcontrib>Nagasaki, Junko</creatorcontrib><creatorcontrib>Yoshikawa, Nanako</creatorcontrib><creatorcontrib>Yamamoto, Aya</creatorcontrib><creatorcontrib>Takito, Shizuka</creatorcontrib><creatorcontrib>Kawasaki, Michio</creatorcontrib><creatorcontrib>Sugiyama, Tatsuo</creatorcontrib><creatorcontrib>Miyake, Hiroshi</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><creatorcontrib>Taniguchi, Mitsutaka</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Hiromu</au><au>Nagasaki, Junko</au><au>Yoshikawa, Nanako</au><au>Yamamoto, Aya</au><au>Takito, Shizuka</au><au>Kawasaki, Michio</au><au>Sugiyama, Tatsuo</au><au>Miyake, Hiroshi</au><au>Weber, Andreas P. M.</au><au>Taniguchi, Mitsutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2011-01</date><risdate>2011</risdate><volume>65</volume><issue>1</issue><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo‐inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2‐oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T‐DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO2‐dependent O2 evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high‐affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo‐inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2‐oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi‐functionally as an oxaloacetate/malate transporter in the malate valve and as a 2‐oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21175886</pmid><doi>10.1111/j.1365-313X.2010.04397.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2011-01, Vol.65 (1), p.15-26
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_821197105
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 2‐oxoglutarate/malate transporter
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
Carbon
Carbon - metabolism
Chlorophyll - metabolism
chloroplast
Chloroplasts - metabolism
Dicarboxylic Acid Transporters - metabolism
Fundamental and applied biological sciences. Psychology
malate valve
Malates - metabolism
Metabolism
Metabolism. Physicochemical requirements
Nitrogen
Nitrogen - metabolism
photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
Plant physiology and development
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Reverse Transcriptase Polymerase Chain Reaction
title The chloroplastic 2‐oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chloroplastic%202%E2%80%90oxoglutarate/malate%20transporter%20has%20dual%20function%20as%20the%20malate%20valve%20and%20in%20carbon/nitrogen%20metabolism&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Kinoshita,%20Hiromu&rft.date=2011-01&rft.volume=65&rft.issue=1&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2010.04397.x&rft_dat=%3Cproquest_cross%3E2220437711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820878088&rft_id=info:pmid/21175886&rfr_iscdi=true