Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants
A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensi...
Gespeichert in:
Veröffentlicht in: | Journal of solar energy engineering 2010-08, Vol.132 (3), p.031012 (8)-031012 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 031012 (8) |
---|---|
container_issue | 3 |
container_start_page | 031012 (8) |
container_title | Journal of solar energy engineering |
container_volume | 132 |
creator | Ho, Clifford K Kolb, Gregory J |
description | A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensitivity studies using stepwise regression analysis can identify and rank the most important parameters and processes as a means to prioritize future research and activities. The probabilistic method begins with the identification of uncertain variables and the assignment of appropriate distributions for those variables. Those parameters are then sampled using a stratified method (Latin hypercube sampling) to ensure complete and representative sampling from each distribution. Models of performance, reliability, and cost are then simulated multiple times using the sampled set of parameters. The results yield a cumulative distribution function that can be used to quantify the probability of exceeding (or being less than) a particular value. Two examples, a simple cost model and a more detailed performance model of a hypothetical 100-MWe power tower, are provided to illustrate the methods. |
doi_str_mv | 10.1115/1.4001468YouarenotloggedintotheASMEDigitalLibrary. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_818840224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818840224</sourcerecordid><originalsourceid>FETCH-LOGICAL-p654-68866213ff257828908fa6da1c82bb06f0bf2d5cf079f92e803c642a7eb3e7ec3</originalsourceid><addsrcrecordid>eNp9zk1LAzEQgOEcFKwf_yE3vWzNx242663UqoUWC60HTyWbnayRdFOTFOm_N2LPXmYYeHkYhB4oGVNKq3s6LgmhpZDv_qACDD453_fQ2SH59AGT9XL2aHublFvYNqhwHJ-hEaFNUwjG6QW6jPEzA5xXbIT0fNA-7H1QyQ49fhs0hKQydcS_Hl4F36rWOhuT1XgFwfiwU7nCS9-Bi9gbPPX5HtKJWHunAl75b8jTqSHFa3RulItwc9pXaPM020xfisXr83w6WRR7UZWFkFIIRrkxrKolkw2RRolOUS1Z2xJhSGtYV2lD6sY0DCThWpRM1dByqEHzK3T7x-6D_zpATNudjRpc_gH8IW4llbIkjJW5vPu3pHVdU0EIZ_wHRat07Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777160032</pqid></control><display><type>article</type><title>Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants</title><source>ASME Transactions Journals (Current)</source><creator>Ho, Clifford K ; Kolb, Gregory J</creator><creatorcontrib>Ho, Clifford K ; Kolb, Gregory J</creatorcontrib><description>A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensitivity studies using stepwise regression analysis can identify and rank the most important parameters and processes as a means to prioritize future research and activities. The probabilistic method begins with the identification of uncertain variables and the assignment of appropriate distributions for those variables. Those parameters are then sampled using a stratified method (Latin hypercube sampling) to ensure complete and representative sampling from each distribution. Models of performance, reliability, and cost are then simulated multiple times using the sampled set of parameters. The results yield a cumulative distribution function that can be used to quantify the probability of exceeding (or being less than) a particular value. Two examples, a simple cost model and a more detailed performance model of a hypothetical 100-MWe power tower, are provided to illustrate the methods.</description><identifier>ISSN: 0199-6231</identifier><identifier>DOI: 10.1115/1.4001468YouarenotloggedintotheASMEDigitalLibrary.</identifier><language>eng</language><subject>Economics ; Electric power generation ; Electric power plants ; Mathematical models ; Probabilistic methods ; Probability theory ; Sampling ; Solar energy ; Uncertainty</subject><ispartof>Journal of solar energy engineering, 2010-08, Vol.132 (3), p.031012 (8)-031012 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ho, Clifford K</creatorcontrib><creatorcontrib>Kolb, Gregory J</creatorcontrib><title>Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants</title><title>Journal of solar energy engineering</title><description>A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensitivity studies using stepwise regression analysis can identify and rank the most important parameters and processes as a means to prioritize future research and activities. The probabilistic method begins with the identification of uncertain variables and the assignment of appropriate distributions for those variables. Those parameters are then sampled using a stratified method (Latin hypercube sampling) to ensure complete and representative sampling from each distribution. Models of performance, reliability, and cost are then simulated multiple times using the sampled set of parameters. The results yield a cumulative distribution function that can be used to quantify the probability of exceeding (or being less than) a particular value. Two examples, a simple cost model and a more detailed performance model of a hypothetical 100-MWe power tower, are provided to illustrate the methods.</description><subject>Economics</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Mathematical models</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Sampling</subject><subject>Solar energy</subject><subject>Uncertainty</subject><issn>0199-6231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9zk1LAzEQgOEcFKwf_yE3vWzNx242663UqoUWC60HTyWbnayRdFOTFOm_N2LPXmYYeHkYhB4oGVNKq3s6LgmhpZDv_qACDD453_fQ2SH59AGT9XL2aHublFvYNqhwHJ-hEaFNUwjG6QW6jPEzA5xXbIT0fNA-7H1QyQ49fhs0hKQydcS_Hl4F36rWOhuT1XgFwfiwU7nCS9-Bi9gbPPX5HtKJWHunAl75b8jTqSHFa3RulItwc9pXaPM020xfisXr83w6WRR7UZWFkFIIRrkxrKolkw2RRolOUS1Z2xJhSGtYV2lD6sY0DCThWpRM1dByqEHzK3T7x-6D_zpATNudjRpc_gH8IW4llbIkjJW5vPu3pHVdU0EIZ_wHRat07Q</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Ho, Clifford K</creator><creator>Kolb, Gregory J</creator><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>20100801</creationdate><title>Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants</title><author>Ho, Clifford K ; Kolb, Gregory J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p654-68866213ff257828908fa6da1c82bb06f0bf2d5cf079f92e803c642a7eb3e7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Economics</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Mathematical models</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Sampling</topic><topic>Solar energy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Clifford K</creatorcontrib><creatorcontrib>Kolb, Gregory J</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Clifford K</au><au>Kolb, Gregory J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants</atitle><jtitle>Journal of solar energy engineering</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>132</volume><issue>3</issue><spage>031012 (8)</spage><epage>031012 (8)</epage><pages>031012 (8)-031012 (8)</pages><issn>0199-6231</issn><abstract>A method for applying probabilistic models to concentrating solar-thermal power plants is described in this paper. The benefits of using probabilistic models include quantification of uncertainties inherent in the system and characterization of their impact on system performance and economics. Sensitivity studies using stepwise regression analysis can identify and rank the most important parameters and processes as a means to prioritize future research and activities. The probabilistic method begins with the identification of uncertain variables and the assignment of appropriate distributions for those variables. Those parameters are then sampled using a stratified method (Latin hypercube sampling) to ensure complete and representative sampling from each distribution. Models of performance, reliability, and cost are then simulated multiple times using the sampled set of parameters. The results yield a cumulative distribution function that can be used to quantify the probability of exceeding (or being less than) a particular value. Two examples, a simple cost model and a more detailed performance model of a hypothetical 100-MWe power tower, are provided to illustrate the methods.</abstract><doi>10.1115/1.4001468YouarenotloggedintotheASMEDigitalLibrary.</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0199-6231 |
ispartof | Journal of solar energy engineering, 2010-08, Vol.132 (3), p.031012 (8)-031012 (8) |
issn | 0199-6231 |
language | eng |
recordid | cdi_proquest_miscellaneous_818840224 |
source | ASME Transactions Journals (Current) |
subjects | Economics Electric power generation Electric power plants Mathematical models Probabilistic methods Probability theory Sampling Solar energy Uncertainty |
title | Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Uncertainty%20into%20Probabilistic%20Performance%20Models%20of%20Concentrating%20Solar%20Power%20Plants&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Ho,%20Clifford%20K&rft.date=2010-08-01&rft.volume=132&rft.issue=3&rft.spage=031012%20(8)&rft.epage=031012%20(8)&rft.pages=031012%20(8)-031012%20(8)&rft.issn=0199-6231&rft_id=info:doi/10.1115/1.4001468YouarenotloggedintotheASMEDigitalLibrary.&rft_dat=%3Cproquest%3E818840224%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777160032&rft_id=info:pmid/&rfr_iscdi=true |