Electronic transport in polycrystalline graphene

Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2010-10, Vol.9 (10), p.806-809
Hauptverfasser: Yazyev, Oleg V, Louie, Steven G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 10
container_start_page 806
container_title Nature materials
container_volume 9
creator Yazyev, Oleg V
Louie, Steven G
description Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours—either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.
doi_str_mv 10.1038/nmat2830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755177392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-47301f267a5801ca738f8fd4e68b673291b6e3f567ae3f34f708e795ec78c2c3</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgitUq-AQyuFEXo7kns5RSL1Bw0_2QpmfqlJnMmGQWfXsjvQiCuDqB8_GH8yN0RfADwUw_utZEqhk-QmeEK5lzKfHx7k0IpSN0HsIaY0qEkKdoRLGihebqDOFpAzb6ztU2i9640Hc-ZrXL-q7ZWL8J0TRN7SBbedN_gIMLdFKZJsDlbo7R_Hk6n7zms_eXt8nTLLdc8phzxTCpqFRGaEysUUxXulpykHohFaMFWUhglUggDcYrhTWoQoBV2lLLxuh2G9v77nOAEMu2DhaaxjjohlBqojWTjOF_pRKCKMUKmuTNL7nuBu_SFQlxIigveEJ3W2R9F4KHqux93Rq_KQkuv8su92Uner3LGxYtLA9w324C91sQ0sqtwP98-HeYM3HwcAg7gC8_CZFF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754152494</pqid></control><display><type>article</type><title>Electronic transport in polycrystalline graphene</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yazyev, Oleg V ; Louie, Steven G</creator><creatorcontrib>Yazyev, Oleg V ; Louie, Steven G</creatorcontrib><description>Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours—either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2830</identifier><identifier>PMID: 20729847</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/998 ; 639/301/357/918/1052 ; Arrays ; Biomaterials ; Boundaries ; Carbon ; Charge carriers ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallography ; Dislocations ; Electronics ; Grain boundaries ; Graphene ; letter ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Silicon ; Theory ; Transport</subject><ispartof>Nature materials, 2010-10, Vol.9 (10), p.806-809</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-47301f267a5801ca738f8fd4e68b673291b6e3f567ae3f34f708e795ec78c2c3</citedby><cites>FETCH-LOGICAL-c464t-47301f267a5801ca738f8fd4e68b673291b6e3f567ae3f34f708e795ec78c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20729847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazyev, Oleg V</creatorcontrib><creatorcontrib>Louie, Steven G</creatorcontrib><title>Electronic transport in polycrystalline graphene</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours—either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.</description><subject>639/301/119/998</subject><subject>639/301/357/918/1052</subject><subject>Arrays</subject><subject>Biomaterials</subject><subject>Boundaries</subject><subject>Carbon</subject><subject>Charge carriers</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallography</subject><subject>Dislocations</subject><subject>Electronics</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Silicon</subject><subject>Theory</subject><subject>Transport</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MtKAzEUBuAgitUq-AQyuFEXo7kns5RSL1Bw0_2QpmfqlJnMmGQWfXsjvQiCuDqB8_GH8yN0RfADwUw_utZEqhk-QmeEK5lzKfHx7k0IpSN0HsIaY0qEkKdoRLGihebqDOFpAzb6ztU2i9640Hc-ZrXL-q7ZWL8J0TRN7SBbedN_gIMLdFKZJsDlbo7R_Hk6n7zms_eXt8nTLLdc8phzxTCpqFRGaEysUUxXulpykHohFaMFWUhglUggDcYrhTWoQoBV2lLLxuh2G9v77nOAEMu2DhaaxjjohlBqojWTjOF_pRKCKMUKmuTNL7nuBu_SFQlxIigveEJ3W2R9F4KHqux93Rq_KQkuv8su92Uner3LGxYtLA9w324C91sQ0sqtwP98-HeYM3HwcAg7gC8_CZFF</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Yazyev, Oleg V</creator><creator>Louie, Steven G</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20101001</creationdate><title>Electronic transport in polycrystalline graphene</title><author>Yazyev, Oleg V ; Louie, Steven G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-47301f267a5801ca738f8fd4e68b673291b6e3f567ae3f34f708e795ec78c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/301/119/998</topic><topic>639/301/357/918/1052</topic><topic>Arrays</topic><topic>Biomaterials</topic><topic>Boundaries</topic><topic>Carbon</topic><topic>Charge carriers</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallography</topic><topic>Dislocations</topic><topic>Electronics</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Silicon</topic><topic>Theory</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazyev, Oleg V</creatorcontrib><creatorcontrib>Louie, Steven G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazyev, Oleg V</au><au>Louie, Steven G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in polycrystalline graphene</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>9</volume><issue>10</issue><spage>806</spage><epage>809</epage><pages>806-809</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours—either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20729847</pmid><doi>10.1038/nmat2830</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2010-10, Vol.9 (10), p.806-809
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_818836330
source Nature; Alma/SFX Local Collection
subjects 639/301/119/998
639/301/357/918/1052
Arrays
Biomaterials
Boundaries
Carbon
Charge carriers
Chemistry and Materials Science
Condensed Matter Physics
Crystallography
Dislocations
Electronics
Grain boundaries
Graphene
letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Silicon
Theory
Transport
title Electronic transport in polycrystalline graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20polycrystalline%20graphene&rft.jtitle=Nature%20materials&rft.au=Yazyev,%20Oleg%20V&rft.date=2010-10-01&rft.volume=9&rft.issue=10&rft.spage=806&rft.epage=809&rft.pages=806-809&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2830&rft_dat=%3Cproquest_cross%3E755177392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754152494&rft_id=info:pmid/20729847&rfr_iscdi=true