Optimal input sets for steering quantized systems
Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x + = x + u , where the u takes values in a set of 2 m + 1 integer numbers, symmetric with respect to 0 arise in some fundamental sit...
Gespeichert in:
Veröffentlicht in: | Mathematics of control, signals, and systems signals, and systems, 2010-10, Vol.22 (2), p.129-153 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Mathematics of control, signals, and systems |
container_volume | 22 |
creator | Marigo, Alessia |
description | Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type
x
+
=
x
+
u
, where the
u
takes values in a set of 2
m
+ 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after
K
steps. We find explicit expressions, for each
K
and for each
m
, of
m
input values such that the reachable set after
K
steps is as large as possible. |
doi_str_mv | 10.1007/s00498-010-0055-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2145753091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfgxdPqzH5kd49S_IJCLwreliSdlZQ2SXeTQ_31pkQQBE8Dw_O-zDyMXSPcIYC5TwDKWQ4IHEBrLk7YDJXUXOf245TNwEnBFTp1zi5S2gAA5gZnDFddX--KbVY33dBnifqUhTZmqSeKdfOZ7Yei6esvWmfpMC536ZKdhWKb6Opnztn70-Pb4oUvV8-vi4clr4RzPc9lKK2SloLLSeRrV0ChAhkTrKBqDaVF7bQw4JCQjAvGSldKxFCqQuVOztnt1NvFdj9Q6v2uThVtt0VD7ZC8RWtljtKO5M0fctMOsRmP80ZLaxxoNUI4QVVsU4oUfBfHx-PBI_ijQj8p9KNCf1ToxZgRUyZ1RxcUf4v_D30D3lpyjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753879054</pqid></control><display><type>article</type><title>Optimal input sets for steering quantized systems</title><source>SpringerLink Journals</source><creator>Marigo, Alessia</creator><creatorcontrib>Marigo, Alessia</creatorcontrib><description>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type
x
+
=
x
+
u
, where the
u
takes values in a set of 2
m
+ 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after
K
steps. We find explicit expressions, for each
K
and for each
m
, of
m
input values such that the reachable set after
K
steps is as large as possible.</description><identifier>ISSN: 0932-4194</identifier><identifier>EISSN: 1435-568X</identifier><identifier>DOI: 10.1007/s00498-010-0055-2</identifier><identifier>CODEN: MCSYEB</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Channels ; Communications Engineering ; Communications equipment ; Control ; Control systems ; Control theory ; Controllers ; Feedback ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mechatronics ; Networks ; Optimization ; Original Article ; Robotics ; Steering ; Systems Theory</subject><ispartof>Mathematics of control, signals, and systems, 2010-10, Vol.22 (2), p.129-153</ispartof><rights>Springer-Verlag London Limited 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00498-010-0055-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00498-010-0055-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marigo, Alessia</creatorcontrib><title>Optimal input sets for steering quantized systems</title><title>Mathematics of control, signals, and systems</title><addtitle>Math. Control Signals Syst</addtitle><description>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type
x
+
=
x
+
u
, where the
u
takes values in a set of 2
m
+ 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after
K
steps. We find explicit expressions, for each
K
and for each
m
, of
m
input values such that the reachable set after
K
steps is as large as possible.</description><subject>Channels</subject><subject>Communications Engineering</subject><subject>Communications equipment</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Feedback</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Steering</subject><subject>Systems Theory</subject><issn>0932-4194</issn><issn>1435-568X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfgxdPqzH5kd49S_IJCLwreliSdlZQ2SXeTQ_31pkQQBE8Dw_O-zDyMXSPcIYC5TwDKWQ4IHEBrLk7YDJXUXOf245TNwEnBFTp1zi5S2gAA5gZnDFddX--KbVY33dBnifqUhTZmqSeKdfOZ7Yei6esvWmfpMC536ZKdhWKb6Opnztn70-Pb4oUvV8-vi4clr4RzPc9lKK2SloLLSeRrV0ChAhkTrKBqDaVF7bQw4JCQjAvGSldKxFCqQuVOztnt1NvFdj9Q6v2uThVtt0VD7ZC8RWtljtKO5M0fctMOsRmP80ZLaxxoNUI4QVVsU4oUfBfHx-PBI_ijQj8p9KNCf1ToxZgRUyZ1RxcUf4v_D30D3lpyjA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Marigo, Alessia</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20101001</creationdate><title>Optimal input sets for steering quantized systems</title><author>Marigo, Alessia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Channels</topic><topic>Communications Engineering</topic><topic>Communications equipment</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Feedback</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Steering</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marigo, Alessia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Mathematics of control, signals, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marigo, Alessia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal input sets for steering quantized systems</atitle><jtitle>Mathematics of control, signals, and systems</jtitle><stitle>Math. Control Signals Syst</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>22</volume><issue>2</issue><spage>129</spage><epage>153</epage><pages>129-153</pages><issn>0932-4194</issn><eissn>1435-568X</eissn><coden>MCSYEB</coden><abstract>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type
x
+
=
x
+
u
, where the
u
takes values in a set of 2
m
+ 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after
K
steps. We find explicit expressions, for each
K
and for each
m
, of
m
input values such that the reachable set after
K
steps is as large as possible.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00498-010-0055-2</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-4194 |
ispartof | Mathematics of control, signals, and systems, 2010-10, Vol.22 (2), p.129-153 |
issn | 0932-4194 1435-568X |
language | eng |
recordid | cdi_proquest_miscellaneous_818836138 |
source | SpringerLink Journals |
subjects | Channels Communications Engineering Communications equipment Control Control systems Control theory Controllers Feedback Linear systems Mathematical analysis Mathematics Mathematics and Statistics Mechatronics Networks Optimization Original Article Robotics Steering Systems Theory |
title | Optimal input sets for steering quantized systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20input%20sets%20for%20steering%20quantized%20systems&rft.jtitle=Mathematics%20of%20control,%20signals,%20and%20systems&rft.au=Marigo,%20Alessia&rft.date=2010-10-01&rft.volume=22&rft.issue=2&rft.spage=129&rft.epage=153&rft.pages=129-153&rft.issn=0932-4194&rft.eissn=1435-568X&rft.coden=MCSYEB&rft_id=info:doi/10.1007/s00498-010-0055-2&rft_dat=%3Cproquest_cross%3E2145753091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753879054&rft_id=info:pmid/&rfr_iscdi=true |