Optimal input sets for steering quantized systems

Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x +  =  x  +  u , where the u takes values in a set of 2 m  + 1 integer numbers, symmetric with respect to 0 arise in some fundamental sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of control, signals, and systems signals, and systems, 2010-10, Vol.22 (2), p.129-153
1. Verfasser: Marigo, Alessia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 129
container_title Mathematics of control, signals, and systems
container_volume 22
creator Marigo, Alessia
description Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x +  =  x  +  u , where the u takes values in a set of 2 m  + 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after K steps. We find explicit expressions, for each K and for each m , of m input values such that the reachable set after K steps is as large as possible.
doi_str_mv 10.1007/s00498-010-0055-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818836138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2145753091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfgxdPqzH5kd49S_IJCLwreliSdlZQ2SXeTQ_31pkQQBE8Dw_O-zDyMXSPcIYC5TwDKWQ4IHEBrLk7YDJXUXOf245TNwEnBFTp1zi5S2gAA5gZnDFddX--KbVY33dBnifqUhTZmqSeKdfOZ7Yei6esvWmfpMC536ZKdhWKb6Opnztn70-Pb4oUvV8-vi4clr4RzPc9lKK2SloLLSeRrV0ChAhkTrKBqDaVF7bQw4JCQjAvGSldKxFCqQuVOztnt1NvFdj9Q6v2uThVtt0VD7ZC8RWtljtKO5M0fctMOsRmP80ZLaxxoNUI4QVVsU4oUfBfHx-PBI_ijQj8p9KNCf1ToxZgRUyZ1RxcUf4v_D30D3lpyjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753879054</pqid></control><display><type>article</type><title>Optimal input sets for steering quantized systems</title><source>SpringerLink Journals</source><creator>Marigo, Alessia</creator><creatorcontrib>Marigo, Alessia</creatorcontrib><description>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x +  =  x  +  u , where the u takes values in a set of 2 m  + 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after K steps. We find explicit expressions, for each K and for each m , of m input values such that the reachable set after K steps is as large as possible.</description><identifier>ISSN: 0932-4194</identifier><identifier>EISSN: 1435-568X</identifier><identifier>DOI: 10.1007/s00498-010-0055-2</identifier><identifier>CODEN: MCSYEB</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Channels ; Communications Engineering ; Communications equipment ; Control ; Control systems ; Control theory ; Controllers ; Feedback ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mechatronics ; Networks ; Optimization ; Original Article ; Robotics ; Steering ; Systems Theory</subject><ispartof>Mathematics of control, signals, and systems, 2010-10, Vol.22 (2), p.129-153</ispartof><rights>Springer-Verlag London Limited 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00498-010-0055-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00498-010-0055-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marigo, Alessia</creatorcontrib><title>Optimal input sets for steering quantized systems</title><title>Mathematics of control, signals, and systems</title><addtitle>Math. Control Signals Syst</addtitle><description>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x +  =  x  +  u , where the u takes values in a set of 2 m  + 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after K steps. We find explicit expressions, for each K and for each m , of m input values such that the reachable set after K steps is as large as possible.</description><subject>Channels</subject><subject>Communications Engineering</subject><subject>Communications equipment</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Feedback</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Steering</subject><subject>Systems Theory</subject><issn>0932-4194</issn><issn>1435-568X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfgxdPqzH5kd49S_IJCLwreliSdlZQ2SXeTQ_31pkQQBE8Dw_O-zDyMXSPcIYC5TwDKWQ4IHEBrLk7YDJXUXOf245TNwEnBFTp1zi5S2gAA5gZnDFddX--KbVY33dBnifqUhTZmqSeKdfOZ7Yei6esvWmfpMC536ZKdhWKb6Opnztn70-Pb4oUvV8-vi4clr4RzPc9lKK2SloLLSeRrV0ChAhkTrKBqDaVF7bQw4JCQjAvGSldKxFCqQuVOztnt1NvFdj9Q6v2uThVtt0VD7ZC8RWtljtKO5M0fctMOsRmP80ZLaxxoNUI4QVVsU4oUfBfHx-PBI_ijQj8p9KNCf1ToxZgRUyZ1RxcUf4v_D30D3lpyjA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Marigo, Alessia</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20101001</creationdate><title>Optimal input sets for steering quantized systems</title><author>Marigo, Alessia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-63fb8438ef96e26d9a0a4fe77f82ecd0b8159527091e1e79f7839b311fb4a4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Channels</topic><topic>Communications Engineering</topic><topic>Communications equipment</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Feedback</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Steering</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marigo, Alessia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Mathematics of control, signals, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marigo, Alessia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal input sets for steering quantized systems</atitle><jtitle>Mathematics of control, signals, and systems</jtitle><stitle>Math. Control Signals Syst</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>22</volume><issue>2</issue><spage>129</spage><epage>153</epage><pages>129-153</pages><issn>0932-4194</issn><eissn>1435-568X</eissn><coden>MCSYEB</coden><abstract>Limited capacity of communication channels has strongly pushed the analysis of control systems subject to a quantized input set. Quantized control system of type x +  =  x  +  u , where the u takes values in a set of 2 m  + 1 integer numbers, symmetric with respect to 0 arise in some fundamental situations, e.g., flat, nilpotent, and linear systems with quantized feedback. In this paper we consider this special type of systems and analyze the reachable set after K steps. We find explicit expressions, for each K and for each m , of m input values such that the reachable set after K steps is as large as possible.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00498-010-0055-2</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-4194
ispartof Mathematics of control, signals, and systems, 2010-10, Vol.22 (2), p.129-153
issn 0932-4194
1435-568X
language eng
recordid cdi_proquest_miscellaneous_818836138
source SpringerLink Journals
subjects Channels
Communications Engineering
Communications equipment
Control
Control systems
Control theory
Controllers
Feedback
Linear systems
Mathematical analysis
Mathematics
Mathematics and Statistics
Mechatronics
Networks
Optimization
Original Article
Robotics
Steering
Systems Theory
title Optimal input sets for steering quantized systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20input%20sets%20for%20steering%20quantized%20systems&rft.jtitle=Mathematics%20of%20control,%20signals,%20and%20systems&rft.au=Marigo,%20Alessia&rft.date=2010-10-01&rft.volume=22&rft.issue=2&rft.spage=129&rft.epage=153&rft.pages=129-153&rft.issn=0932-4194&rft.eissn=1435-568X&rft.coden=MCSYEB&rft_id=info:doi/10.1007/s00498-010-0055-2&rft_dat=%3Cproquest_cross%3E2145753091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753879054&rft_id=info:pmid/&rfr_iscdi=true