Zero-Sum Flows in Regular Graphs

For an undirected graph G , a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2010-09, Vol.26 (5), p.603-615
Hauptverfasser: Akbari, S., Daemi, A., Hatami, O., Javanmard, A., Mehrabian, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 5
container_start_page 603
container_title Graphs and combinatorics
container_volume 26
creator Akbari, S.
Daemi, A.
Hatami, O.
Javanmard, A.
Mehrabian, A.
description For an undirected graph G , a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that if G is an r -regular graph ( r  ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum flow has a zero-sum ( n  + 3) 2 -flow. Finally, the existence of k -flows for small graphs is investigated.
doi_str_mv 10.1007/s00373-010-0946-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818834492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818834492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-eeb09de6c575f0b90a2b401294f07c58959274d664f885792978eeaea57892673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNvixVN08rXJHKVoFQqCHxcvId3O1pbtbk26iP_elBUEwdMc5nlfZh7GzgVcCQB7nQCUVRwEcEBdcnPARkIrww0KfchGgELkrcBjdpLSGgCM0DBixRvFjj_3m-Ku6T5TsWqLJ1r2TYjFNIbtezplR3VoEp39zDF7vbt9mdzz2eP0YXIz45XSdseJ5oALKitjTQ1zhCDnGoREXYOtjEOD0upFWeraOWNRonVEgYKxDmVp1ZhdDr3b2H30lHZ-s0oVNU1oqeuTd8I5pTXKTF78IdddH9t8nLcatVMqPz5mYoCq2KUUqfbbuNqE-OUF-L0xPxjz2ZjfG_MmZ-SQSZltlxR_i_8PfQO_j2pF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749483314</pqid></control><display><type>article</type><title>Zero-Sum Flows in Regular Graphs</title><source>Springer Online Journals - JUSTICE</source><creator>Akbari, S. ; Daemi, A. ; Hatami, O. ; Javanmard, A. ; Mehrabian, A.</creator><creatorcontrib>Akbari, S. ; Daemi, A. ; Hatami, O. ; Javanmard, A. ; Mehrabian, A.</creatorcontrib><description>For an undirected graph G , a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that if G is an r -regular graph ( r  ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum flow has a zero-sum ( n  + 3) 2 -flow. Finally, the existence of k -flows for small graphs is investigated.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-010-0946-5</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Combinatorial analysis ; Combinatorics ; Engineering Design ; Equivalence ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Original Paper ; Real numbers</subject><ispartof>Graphs and combinatorics, 2010-09, Vol.26 (5), p.603-615</ispartof><rights>Springer 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-eeb09de6c575f0b90a2b401294f07c58959274d664f885792978eeaea57892673</citedby><cites>FETCH-LOGICAL-c347t-eeb09de6c575f0b90a2b401294f07c58959274d664f885792978eeaea57892673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-010-0946-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-010-0946-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akbari, S.</creatorcontrib><creatorcontrib>Daemi, A.</creatorcontrib><creatorcontrib>Hatami, O.</creatorcontrib><creatorcontrib>Javanmard, A.</creatorcontrib><creatorcontrib>Mehrabian, A.</creatorcontrib><title>Zero-Sum Flows in Regular Graphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>For an undirected graph G , a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that if G is an r -regular graph ( r  ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum flow has a zero-sum ( n  + 3) 2 -flow. Finally, the existence of k -flows for small graphs is investigated.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Real numbers</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNvixVN08rXJHKVoFQqCHxcvId3O1pbtbk26iP_elBUEwdMc5nlfZh7GzgVcCQB7nQCUVRwEcEBdcnPARkIrww0KfchGgELkrcBjdpLSGgCM0DBixRvFjj_3m-Ku6T5TsWqLJ1r2TYjFNIbtezplR3VoEp39zDF7vbt9mdzz2eP0YXIz45XSdseJ5oALKitjTQ1zhCDnGoREXYOtjEOD0upFWeraOWNRonVEgYKxDmVp1ZhdDr3b2H30lHZ-s0oVNU1oqeuTd8I5pTXKTF78IdddH9t8nLcatVMqPz5mYoCq2KUUqfbbuNqE-OUF-L0xPxjz2ZjfG_MmZ-SQSZltlxR_i_8PfQO_j2pF</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Akbari, S.</creator><creator>Daemi, A.</creator><creator>Hatami, O.</creator><creator>Javanmard, A.</creator><creator>Mehrabian, A.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Zero-Sum Flows in Regular Graphs</title><author>Akbari, S. ; Daemi, A. ; Hatami, O. ; Javanmard, A. ; Mehrabian, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-eeb09de6c575f0b90a2b401294f07c58959274d664f885792978eeaea57892673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, S.</creatorcontrib><creatorcontrib>Daemi, A.</creatorcontrib><creatorcontrib>Hatami, O.</creatorcontrib><creatorcontrib>Javanmard, A.</creatorcontrib><creatorcontrib>Mehrabian, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, S.</au><au>Daemi, A.</au><au>Hatami, O.</au><au>Javanmard, A.</au><au>Mehrabian, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Sum Flows in Regular Graphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>26</volume><issue>5</issue><spage>603</spage><epage>615</epage><pages>603-615</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>For an undirected graph G , a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that if G is an r -regular graph ( r  ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum flow has a zero-sum ( n  + 3) 2 -flow. Finally, the existence of k -flows for small graphs is investigated.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s00373-010-0946-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2010-09, Vol.26 (5), p.603-615
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_miscellaneous_818834492
source Springer Online Journals - JUSTICE
subjects Combinatorial analysis
Combinatorics
Engineering Design
Equivalence
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Original Paper
Real numbers
title Zero-Sum Flows in Regular Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Sum%20Flows%20in%20Regular%20Graphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Akbari,%20S.&rft.date=2010-09-01&rft.volume=26&rft.issue=5&rft.spage=603&rft.epage=615&rft.pages=603-615&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-010-0946-5&rft_dat=%3Cproquest_cross%3E818834492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749483314&rft_id=info:pmid/&rfr_iscdi=true