Ruin Probabilities for a Risk Model with Two Classes of Claims
In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Ma...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2010-09, Vol.26 (9), p.1749-1760 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1760 |
---|---|
container_issue | 9 |
container_start_page | 1749 |
container_title | Acta mathematica Sinica. English series |
container_volume | 26 |
creator | Lv, Tong Ling Guo, Jun Yi Zhang, Xin |
description | In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Markov property of the related vector processes. Because such obtained processes belong to the class of the so-called piecewise-deterministic Markov process, the extended infinitesimal generator is derived, exponential martingale for the risk process is studied. The exponential bound of ruin probability in iafinite time horizon is obtained. |
doi_str_mv | 10.1007/s10114-010-8091-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_818834419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>35131470</cqvip_id><sourcerecordid>818834419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-561340a77c8c9921e19dc2a88ad35ae7eef962e896524a1ab228b9bbdcc6ef3d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFZ_gLvBjavR3Ekmj40gxRdUlFLXIZPJtGmnkzbp0PrvTZmC4MK7uWfxncPhJMk1oDtAiN0HQAAkQ4AyjgRk-5NkAASLjFFgp0fNC6DnyUUIC4SKQiA6SB4mnW3TT-9KVdrGbq0Jae18qtKJDcv03VWmSXd2O0-nO5eOGhVCJFx9kHYVLpOzWjXBXB3_MPl6fpqOXrPxx8vb6HGcaczINisoYIIUY5prIXIwICqdK85VhQtlmDG1oLnhghY5UaDKPOelKMtKa2pqXOFhctvnrr3bdCZs5coGbZpGtcZ1QXLgHBMCIpI3f8iF63wby0lGKKbxighBD2nvQvCmlmtvV8p_S0DysKfs95RxT3nYU-6jJ-89IbLtzPjf4P9MxzZ67trZJvpkqfSyto2RuAAMhCH8A_4EgoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746366665</pqid></control><display><type>article</type><title>Ruin Probabilities for a Risk Model with Two Classes of Claims</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lv, Tong Ling ; Guo, Jun Yi ; Zhang, Xin</creator><creatorcontrib>Lv, Tong Ling ; Guo, Jun Yi ; Zhang, Xin</creatorcontrib><description>In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Markov property of the related vector processes. Because such obtained processes belong to the class of the so-called piecewise-deterministic Markov process, the extended infinitesimal generator is derived, exponential martingale for the risk process is studied. The exponential bound of ruin probability in iafinite time horizon is obtained.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-010-8091-x</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Generators ; Horizon ; Markov analysis ; Markov processes ; Martingales ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Poisson过程 ; Probability ; Random variables ; Risk ; Studies ; Vectors (mathematics) ; 向量马尔可夫过程 ; 更新过程 ; 破产概率 ; 索赔次数 ; 风险模型 ; 风险过程</subject><ispartof>Acta mathematica Sinica. English series, 2010-09, Vol.26 (9), p.1749-1760</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-561340a77c8c9921e19dc2a88ad35ae7eef962e896524a1ab228b9bbdcc6ef3d3</citedby><cites>FETCH-LOGICAL-c374t-561340a77c8c9921e19dc2a88ad35ae7eef962e896524a1ab228b9bbdcc6ef3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-010-8091-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-010-8091-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lv, Tong Ling</creatorcontrib><creatorcontrib>Guo, Jun Yi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Ruin Probabilities for a Risk Model with Two Classes of Claims</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Markov property of the related vector processes. Because such obtained processes belong to the class of the so-called piecewise-deterministic Markov process, the extended infinitesimal generator is derived, exponential martingale for the risk process is studied. The exponential bound of ruin probability in iafinite time horizon is obtained.</description><subject>Generators</subject><subject>Horizon</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Poisson过程</subject><subject>Probability</subject><subject>Random variables</subject><subject>Risk</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><subject>向量马尔可夫过程</subject><subject>更新过程</subject><subject>破产概率</subject><subject>索赔次数</subject><subject>风险模型</subject><subject>风险过程</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhQdRsFZ_gLvBjavR3Ekmj40gxRdUlFLXIZPJtGmnkzbp0PrvTZmC4MK7uWfxncPhJMk1oDtAiN0HQAAkQ4AyjgRk-5NkAASLjFFgp0fNC6DnyUUIC4SKQiA6SB4mnW3TT-9KVdrGbq0Jae18qtKJDcv03VWmSXd2O0-nO5eOGhVCJFx9kHYVLpOzWjXBXB3_MPl6fpqOXrPxx8vb6HGcaczINisoYIIUY5prIXIwICqdK85VhQtlmDG1oLnhghY5UaDKPOelKMtKa2pqXOFhctvnrr3bdCZs5coGbZpGtcZ1QXLgHBMCIpI3f8iF63wby0lGKKbxighBD2nvQvCmlmtvV8p_S0DysKfs95RxT3nYU-6jJ-89IbLtzPjf4P9MxzZ67trZJvpkqfSyto2RuAAMhCH8A_4EgoU</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lv, Tong Ling</creator><creator>Guo, Jun Yi</creator><creator>Zhang, Xin</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Ruin Probabilities for a Risk Model with Two Classes of Claims</title><author>Lv, Tong Ling ; Guo, Jun Yi ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-561340a77c8c9921e19dc2a88ad35ae7eef962e896524a1ab228b9bbdcc6ef3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Generators</topic><topic>Horizon</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Poisson过程</topic><topic>Probability</topic><topic>Random variables</topic><topic>Risk</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><topic>向量马尔可夫过程</topic><topic>更新过程</topic><topic>破产概率</topic><topic>索赔次数</topic><topic>风险模型</topic><topic>风险过程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Tong Ling</creatorcontrib><creatorcontrib>Guo, Jun Yi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Tong Ling</au><au>Guo, Jun Yi</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruin Probabilities for a Risk Model with Two Classes of Claims</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>26</volume><issue>9</issue><spage>1749</spage><epage>1760</epage><pages>1749-1760</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Markov property of the related vector processes. Because such obtained processes belong to the class of the so-called piecewise-deterministic Markov process, the extended infinitesimal generator is derived, exponential martingale for the risk process is studied. The exponential bound of ruin probability in iafinite time horizon is obtained.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-010-8091-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2010-09, Vol.26 (9), p.1749-1760 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_miscellaneous_818834419 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Generators Horizon Markov analysis Markov processes Martingales Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Poisson过程 Probability Random variables Risk Studies Vectors (mathematics) 向量马尔可夫过程 更新过程 破产概率 索赔次数 风险模型 风险过程 |
title | Ruin Probabilities for a Risk Model with Two Classes of Claims |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruin%20Probabilities%20for%20a%20Risk%20Model%20with%20Two%20Classes%20of%20Claims&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Lv,%20Tong%20Ling&rft.date=2010-09-01&rft.volume=26&rft.issue=9&rft.spage=1749&rft.epage=1760&rft.pages=1749-1760&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-010-8091-x&rft_dat=%3Cproquest_cross%3E818834419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746366665&rft_id=info:pmid/&rft_cqvip_id=35131470&rfr_iscdi=true |