A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems
The use of renewable energy sources can reduce the greenhouse gas emissions and the dependence on fossil fuels. The main problem of the installations based on renewable energy is that electricity generation cannot be fully forecasted and may not follow the trend of the actual energy demand. Hybrid s...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2010-09, Vol.4 (3), p.323-333 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 3 |
container_start_page | 323 |
container_title | IEEE systems journal |
container_volume | 4 |
creator | Dagdougui, H Minciardi, R Ouammi, A Robba, M Sacile, R |
description | The use of renewable energy sources can reduce the greenhouse gas emissions and the dependence on fossil fuels. The main problem of the installations based on renewable energy is that electricity generation cannot be fully forecasted and may not follow the trend of the actual energy demand. Hybrid systems (including different subsystems such as renewable energy plants, energy storage systems based on hydrogen or dam water reservoirs) can help in improving the economic and environmental sustainability of renewable energy plants. In addition, hybrid systems may be used to satisfy other user demands (such as water supply or hydrogen for automotive use). However, their use should be optimized in order to fulfill the user demand in terms of energy or other needs. In this paper, a model representing an integrated hybrid system based on a mix of renewable energy generation/conversion technologies (e.g., electrolyzer, hydroelectric plant, pumping stations, wind turbines, fuel cell) is presented. The model includes an optimization problem for the control of the different ways to store energy. The goal is to satisfy the hourly variable electric, hydrogen, and water demands. A specific application area in Morocco is considered and the results obtained are discussed in detail. |
doi_str_mv | 10.1109/JSYST.2010.2059150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_818833449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5556042</ieee_id><sourcerecordid>2722273631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c2e104b5aa3bdf3a0c06cfe8768b3e5e478c339516ea6dcd21ee5bec8a293f043</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEqXwA7CxxIJVip-JvazaQkFFIFoWrILjTCBVEhc7Ecrfkz7EgtXMaO69mjlBcEnwiBCsbh-X78vViOJ-plgoIvBRMCCKxaGijB_vehpKIvlpcOb9GmMhRawGwccYTbtaV4VBUzCFL2yNnmwGJcqtQ80XoFfQZbgqKkATWzfOlsjmaN6lrsj6XQ0_Oi0BzWpwnx16cTZrTbNNWXa-gcqfBye5Lj1cHOoweLubrSbzcPF8_zAZL0LDaNyEhgLBPBVaszTLmcYGRyYHGUcyZSCAx9IwpgSJQEeZySgBECkYqaliOeZsGNzsczfOfrfgm6QqvIGy1DXY1if975IxzlWvvP6nXNvW1f1xCcFUcYGp2ObRvco4672DPNm4otKu60XJlnmyY55smScH5r3pam8qAODPIISIMKfsF61dfaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029450254</pqid></control><display><type>article</type><title>A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Dagdougui, H ; Minciardi, R ; Ouammi, A ; Robba, M ; Sacile, R</creator><creatorcontrib>Dagdougui, H ; Minciardi, R ; Ouammi, A ; Robba, M ; Sacile, R</creatorcontrib><description>The use of renewable energy sources can reduce the greenhouse gas emissions and the dependence on fossil fuels. The main problem of the installations based on renewable energy is that electricity generation cannot be fully forecasted and may not follow the trend of the actual energy demand. Hybrid systems (including different subsystems such as renewable energy plants, energy storage systems based on hydrogen or dam water reservoirs) can help in improving the economic and environmental sustainability of renewable energy plants. In addition, hybrid systems may be used to satisfy other user demands (such as water supply or hydrogen for automotive use). However, their use should be optimized in order to fulfill the user demand in terms of energy or other needs. In this paper, a model representing an integrated hybrid system based on a mix of renewable energy generation/conversion technologies (e.g., electrolyzer, hydroelectric plant, pumping stations, wind turbines, fuel cell) is presented. The model includes an optimization problem for the control of the different ways to store energy. The goal is to satisfy the hourly variable electric, hydrogen, and water demands. A specific application area in Morocco is considered and the results obtained are discussed in detail.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2010.2059150</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternative energy sources ; Decision support system ; Demand ; Dynamical systems ; Dynamics ; Energy policy ; energy storage ; Fuel cells ; Hybrid systems ; hydrogen ; Hydrogen storage ; Marketing ; Mathematical models ; mathematical programming ; optimal control ; Renewable energy ; Reservoirs ; Studies ; water supply ; wind energy ; Wind farms ; Wind speed ; Wind turbines</subject><ispartof>IEEE systems journal, 2010-09, Vol.4 (3), p.323-333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c2e104b5aa3bdf3a0c06cfe8768b3e5e478c339516ea6dcd21ee5bec8a293f043</citedby><cites>FETCH-LOGICAL-c327t-c2e104b5aa3bdf3a0c06cfe8768b3e5e478c339516ea6dcd21ee5bec8a293f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5556042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5556042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dagdougui, H</creatorcontrib><creatorcontrib>Minciardi, R</creatorcontrib><creatorcontrib>Ouammi, A</creatorcontrib><creatorcontrib>Robba, M</creatorcontrib><creatorcontrib>Sacile, R</creatorcontrib><title>A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>The use of renewable energy sources can reduce the greenhouse gas emissions and the dependence on fossil fuels. The main problem of the installations based on renewable energy is that electricity generation cannot be fully forecasted and may not follow the trend of the actual energy demand. Hybrid systems (including different subsystems such as renewable energy plants, energy storage systems based on hydrogen or dam water reservoirs) can help in improving the economic and environmental sustainability of renewable energy plants. In addition, hybrid systems may be used to satisfy other user demands (such as water supply or hydrogen for automotive use). However, their use should be optimized in order to fulfill the user demand in terms of energy or other needs. In this paper, a model representing an integrated hybrid system based on a mix of renewable energy generation/conversion technologies (e.g., electrolyzer, hydroelectric plant, pumping stations, wind turbines, fuel cell) is presented. The model includes an optimization problem for the control of the different ways to store energy. The goal is to satisfy the hourly variable electric, hydrogen, and water demands. A specific application area in Morocco is considered and the results obtained are discussed in detail.</description><subject>Alternative energy sources</subject><subject>Decision support system</subject><subject>Demand</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy policy</subject><subject>energy storage</subject><subject>Fuel cells</subject><subject>Hybrid systems</subject><subject>hydrogen</subject><subject>Hydrogen storage</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>mathematical programming</subject><subject>optimal control</subject><subject>Renewable energy</subject><subject>Reservoirs</subject><subject>Studies</subject><subject>water supply</subject><subject>wind energy</subject><subject>Wind farms</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRSMEEqXwA7CxxIJVip-JvazaQkFFIFoWrILjTCBVEhc7Ecrfkz7EgtXMaO69mjlBcEnwiBCsbh-X78vViOJ-plgoIvBRMCCKxaGijB_vehpKIvlpcOb9GmMhRawGwccYTbtaV4VBUzCFL2yNnmwGJcqtQ80XoFfQZbgqKkATWzfOlsjmaN6lrsj6XQ0_Oi0BzWpwnx16cTZrTbNNWXa-gcqfBye5Lj1cHOoweLubrSbzcPF8_zAZL0LDaNyEhgLBPBVaszTLmcYGRyYHGUcyZSCAx9IwpgSJQEeZySgBECkYqaliOeZsGNzsczfOfrfgm6QqvIGy1DXY1if975IxzlWvvP6nXNvW1f1xCcFUcYGp2ObRvco4672DPNm4otKu60XJlnmyY55smScH5r3pam8qAODPIISIMKfsF61dfaA</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Dagdougui, H</creator><creator>Minciardi, R</creator><creator>Ouammi, A</creator><creator>Robba, M</creator><creator>Sacile, R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201009</creationdate><title>A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems</title><author>Dagdougui, H ; Minciardi, R ; Ouammi, A ; Robba, M ; Sacile, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c2e104b5aa3bdf3a0c06cfe8768b3e5e478c339516ea6dcd21ee5bec8a293f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative energy sources</topic><topic>Decision support system</topic><topic>Demand</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy policy</topic><topic>energy storage</topic><topic>Fuel cells</topic><topic>Hybrid systems</topic><topic>hydrogen</topic><topic>Hydrogen storage</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>mathematical programming</topic><topic>optimal control</topic><topic>Renewable energy</topic><topic>Reservoirs</topic><topic>Studies</topic><topic>water supply</topic><topic>wind energy</topic><topic>Wind farms</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagdougui, H</creatorcontrib><creatorcontrib>Minciardi, R</creatorcontrib><creatorcontrib>Ouammi, A</creatorcontrib><creatorcontrib>Robba, M</creatorcontrib><creatorcontrib>Sacile, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dagdougui, H</au><au>Minciardi, R</au><au>Ouammi, A</au><au>Robba, M</au><au>Sacile, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2010-09</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>323</spage><epage>333</epage><pages>323-333</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>The use of renewable energy sources can reduce the greenhouse gas emissions and the dependence on fossil fuels. The main problem of the installations based on renewable energy is that electricity generation cannot be fully forecasted and may not follow the trend of the actual energy demand. Hybrid systems (including different subsystems such as renewable energy plants, energy storage systems based on hydrogen or dam water reservoirs) can help in improving the economic and environmental sustainability of renewable energy plants. In addition, hybrid systems may be used to satisfy other user demands (such as water supply or hydrogen for automotive use). However, their use should be optimized in order to fulfill the user demand in terms of energy or other needs. In this paper, a model representing an integrated hybrid system based on a mix of renewable energy generation/conversion technologies (e.g., electrolyzer, hydroelectric plant, pumping stations, wind turbines, fuel cell) is presented. The model includes an optimization problem for the control of the different ways to store energy. The goal is to satisfy the hourly variable electric, hydrogen, and water demands. A specific application area in Morocco is considered and the results obtained are discussed in detail.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2010.2059150</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2010-09, Vol.4 (3), p.323-333 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_818833449 |
source | IEEE Electronic Library (IEL) |
subjects | Alternative energy sources Decision support system Demand Dynamical systems Dynamics Energy policy energy storage Fuel cells Hybrid systems hydrogen Hydrogen storage Marketing Mathematical models mathematical programming optimal control Renewable energy Reservoirs Studies water supply wind energy Wind farms Wind speed Wind turbines |
title | A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamic%20Decision%20Model%20for%20the%20Real-Time%20Control%20of%20Hybrid%20Renewable%20Energy%20Production%20Systems&rft.jtitle=IEEE%20systems%20journal&rft.au=Dagdougui,%20H&rft.date=2010-09&rft.volume=4&rft.issue=3&rft.spage=323&rft.epage=333&rft.pages=323-333&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2010.2059150&rft_dat=%3Cproquest_RIE%3E2722273631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029450254&rft_id=info:pmid/&rft_ieee_id=5556042&rfr_iscdi=true |