Locally Affine Invariant Descriptors for Shape Matching and Retrieval

This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2010-09, Vol.17 (9), p.803-806
Hauptverfasser: Wang, Zhaozhong, Liang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 9
container_start_page 803
container_title IEEE signal processing letters
container_volume 17
creator Wang, Zhaozhong
Liang, Min
description This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.
doi_str_mv 10.1109/LSP.2010.2057506
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_818832985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5508360</ieee_id><sourcerecordid>818832985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWFfvgpeAB09bJ5tNkxyLVi2sKFbPS5pO7Jbt7ppsC_33prR48DTfwJth5hFyzWDIGOj7YvY-zCB2GQgpYHRCBkwIlWZ8xE5jBgmp1qDOyUUIKwBQTIkBmRStNXW9o2PnqgbptNkaX5mmp48YrK-6vvWButbT2dJ0SF9Nb5dV801Ns6Af2PsKt6a-JGfO1AGvjjUhX0-Tz4eXtHh7nj6Mi9TyjPep1AzmUjLFUOcWLZdzkWcoHcuNBCU4WsO1zEwucq64kOhinDsp5YIvtOEJuTvs7Xz7s8HQl-sqWKxr02C7CWX8SfFMx00Juf1HrtqNb-JxJYNMRis6ogmBA2V9G4JHV3a-Whu_i1C511pGreVea3nUGkduDiMVIv7hQoDiI-C_iSJxnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027236988</pqid></control><display><type>article</type><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhaozhong ; Liang, Min</creator><creatorcontrib>Wang, Zhaozhong ; Liang, Min</creatorcontrib><description>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2010.2057506</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affine invariance ; Anisotropic magnetoresistance ; Diffusion processes ; Image databases ; Image processing ; Image retrieval ; Invariants ; Matching ; Matrix theory ; Pattern matching ; Pattern recognition ; Representations ; Retrieval ; Running ; shape descriptor ; shape matching ; Shape measurement ; shape retrieval ; Shearing ; Solids ; State of the art</subject><ispartof>IEEE signal processing letters, 2010-09, Vol.17 (9), p.803-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</citedby><cites>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5508360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5508360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</description><subject>Affine invariance</subject><subject>Anisotropic magnetoresistance</subject><subject>Diffusion processes</subject><subject>Image databases</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Invariants</subject><subject>Matching</subject><subject>Matrix theory</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Running</subject><subject>shape descriptor</subject><subject>shape matching</subject><subject>Shape measurement</subject><subject>shape retrieval</subject><subject>Shearing</subject><subject>Solids</subject><subject>State of the art</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQRoMoWFfvgpeAB09bJ5tNkxyLVi2sKFbPS5pO7Jbt7ppsC_33prR48DTfwJth5hFyzWDIGOj7YvY-zCB2GQgpYHRCBkwIlWZ8xE5jBgmp1qDOyUUIKwBQTIkBmRStNXW9o2PnqgbptNkaX5mmp48YrK-6vvWButbT2dJ0SF9Nb5dV801Ns6Af2PsKt6a-JGfO1AGvjjUhX0-Tz4eXtHh7nj6Mi9TyjPep1AzmUjLFUOcWLZdzkWcoHcuNBCU4WsO1zEwucq64kOhinDsp5YIvtOEJuTvs7Xz7s8HQl-sqWKxr02C7CWX8SfFMx00Juf1HrtqNb-JxJYNMRis6ogmBA2V9G4JHV3a-Whu_i1C511pGreVea3nUGkduDiMVIv7hQoDiI-C_iSJxnw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Wang, Zhaozhong</creator><creator>Liang, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100901</creationdate><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><author>Wang, Zhaozhong ; Liang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Affine invariance</topic><topic>Anisotropic magnetoresistance</topic><topic>Diffusion processes</topic><topic>Image databases</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Invariants</topic><topic>Matching</topic><topic>Matrix theory</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Running</topic><topic>shape descriptor</topic><topic>shape matching</topic><topic>Shape measurement</topic><topic>shape retrieval</topic><topic>Shearing</topic><topic>Solids</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhaozhong</au><au>Liang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>17</volume><issue>9</issue><spage>803</spage><epage>806</epage><pages>803-806</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2010.2057506</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2010-09, Vol.17 (9), p.803-806
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_miscellaneous_818832985
source IEEE Electronic Library (IEL)
subjects Affine invariance
Anisotropic magnetoresistance
Diffusion processes
Image databases
Image processing
Image retrieval
Invariants
Matching
Matrix theory
Pattern matching
Pattern recognition
Representations
Retrieval
Running
shape descriptor
shape matching
Shape measurement
shape retrieval
Shearing
Solids
State of the art
title Locally Affine Invariant Descriptors for Shape Matching and Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Affine%20Invariant%20Descriptors%20for%20Shape%20Matching%20and%20Retrieval&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Zhaozhong&rft.date=2010-09-01&rft.volume=17&rft.issue=9&rft.spage=803&rft.epage=806&rft.pages=803-806&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2010.2057506&rft_dat=%3Cproquest_RIE%3E818832985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027236988&rft_id=info:pmid/&rft_ieee_id=5508360&rfr_iscdi=true