Locally Affine Invariant Descriptors for Shape Matching and Retrieval
This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation....
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2010-09, Vol.17 (9), p.803-806 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 9 |
container_start_page | 803 |
container_title | IEEE signal processing letters |
container_volume | 17 |
creator | Wang, Zhaozhong Liang, Min |
description | This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches. |
doi_str_mv | 10.1109/LSP.2010.2057506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_818832985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5508360</ieee_id><sourcerecordid>818832985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWFfvgpeAB09bJ5tNkxyLVi2sKFbPS5pO7Jbt7ppsC_33prR48DTfwJth5hFyzWDIGOj7YvY-zCB2GQgpYHRCBkwIlWZ8xE5jBgmp1qDOyUUIKwBQTIkBmRStNXW9o2PnqgbptNkaX5mmp48YrK-6vvWButbT2dJ0SF9Nb5dV801Ns6Af2PsKt6a-JGfO1AGvjjUhX0-Tz4eXtHh7nj6Mi9TyjPep1AzmUjLFUOcWLZdzkWcoHcuNBCU4WsO1zEwucq64kOhinDsp5YIvtOEJuTvs7Xz7s8HQl-sqWKxr02C7CWX8SfFMx00Juf1HrtqNb-JxJYNMRis6ogmBA2V9G4JHV3a-Whu_i1C511pGreVea3nUGkduDiMVIv7hQoDiI-C_iSJxnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027236988</pqid></control><display><type>article</type><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhaozhong ; Liang, Min</creator><creatorcontrib>Wang, Zhaozhong ; Liang, Min</creatorcontrib><description>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2010.2057506</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affine invariance ; Anisotropic magnetoresistance ; Diffusion processes ; Image databases ; Image processing ; Image retrieval ; Invariants ; Matching ; Matrix theory ; Pattern matching ; Pattern recognition ; Representations ; Retrieval ; Running ; shape descriptor ; shape matching ; Shape measurement ; shape retrieval ; Shearing ; Solids ; State of the art</subject><ispartof>IEEE signal processing letters, 2010-09, Vol.17 (9), p.803-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</citedby><cites>FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5508360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5508360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</description><subject>Affine invariance</subject><subject>Anisotropic magnetoresistance</subject><subject>Diffusion processes</subject><subject>Image databases</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Invariants</subject><subject>Matching</subject><subject>Matrix theory</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Running</subject><subject>shape descriptor</subject><subject>shape matching</subject><subject>Shape measurement</subject><subject>shape retrieval</subject><subject>Shearing</subject><subject>Solids</subject><subject>State of the art</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQRoMoWFfvgpeAB09bJ5tNkxyLVi2sKFbPS5pO7Jbt7ppsC_33prR48DTfwJth5hFyzWDIGOj7YvY-zCB2GQgpYHRCBkwIlWZ8xE5jBgmp1qDOyUUIKwBQTIkBmRStNXW9o2PnqgbptNkaX5mmp48YrK-6vvWButbT2dJ0SF9Nb5dV801Ns6Af2PsKt6a-JGfO1AGvjjUhX0-Tz4eXtHh7nj6Mi9TyjPep1AzmUjLFUOcWLZdzkWcoHcuNBCU4WsO1zEwucq64kOhinDsp5YIvtOEJuTvs7Xz7s8HQl-sqWKxr02C7CWX8SfFMx00Juf1HrtqNb-JxJYNMRis6ogmBA2V9G4JHV3a-Whu_i1C511pGreVea3nUGkduDiMVIv7hQoDiI-C_iSJxnw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Wang, Zhaozhong</creator><creator>Liang, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100901</creationdate><title>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</title><author>Wang, Zhaozhong ; Liang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7910b77181e94cec37b542e7f14a70853eca3972a45438357efa45bf777d3d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Affine invariance</topic><topic>Anisotropic magnetoresistance</topic><topic>Diffusion processes</topic><topic>Image databases</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Invariants</topic><topic>Matching</topic><topic>Matrix theory</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Running</topic><topic>shape descriptor</topic><topic>shape matching</topic><topic>Shape measurement</topic><topic>shape retrieval</topic><topic>Shearing</topic><topic>Solids</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhaozhong</au><au>Liang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Affine Invariant Descriptors for Shape Matching and Retrieval</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>17</volume><issue>9</issue><spage>803</spage><epage>806</epage><pages>803-806</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This work proposes novel locally affine invariant descriptors for shape representation. The descriptors are theoretically simple and solid, derived from the matrix theories. They can be used for matching and retrieval of shapes under affine transformation, articulated motion or nonrigid deformation. Comparisons of the work with the state-of-the-art shape descriptors are performed based on synthetic and some well-known databases. The experiments validate that the proposed descriptors achieve higher retrieval accuracy and have faster running speed than most of other approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2010.2057506</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2010-09, Vol.17 (9), p.803-806 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_miscellaneous_818832985 |
source | IEEE Electronic Library (IEL) |
subjects | Affine invariance Anisotropic magnetoresistance Diffusion processes Image databases Image processing Image retrieval Invariants Matching Matrix theory Pattern matching Pattern recognition Representations Retrieval Running shape descriptor shape matching Shape measurement shape retrieval Shearing Solids State of the art |
title | Locally Affine Invariant Descriptors for Shape Matching and Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Affine%20Invariant%20Descriptors%20for%20Shape%20Matching%20and%20Retrieval&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Zhaozhong&rft.date=2010-09-01&rft.volume=17&rft.issue=9&rft.spage=803&rft.epage=806&rft.pages=803-806&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2010.2057506&rft_dat=%3Cproquest_RIE%3E818832985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027236988&rft_id=info:pmid/&rft_ieee_id=5508360&rfr_iscdi=true |