Practical Strategies for Power-Efficient Computing Technologies
After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2010-02, Vol.98 (2), p.215-236 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 215 |
container_title | Proceedings of the IEEE |
container_volume | 98 |
creator | Chang, Leland Frank, David J. Montoye, Robert K. Koester, Steven J. Ji, Brian L. Coteus, Paul W. Dennard, Robert H. Haensch, Wilfried |
description | After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered. |
doi_str_mv | 10.1109/JPROC.2009.2035451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_818832778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395765</ieee_id><sourcerecordid>1019659457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</originalsourceid><addsrcrecordid>eNqFkTtPAzEQhC0EEiHwB6A50UBz4MetHxVCp_BSpEQQastxfOGiyznYFyH-PQ6JKCig2W2-md3RIHRK8BUhWF0_jZ9H5RXFWKXBoACyh3oEQOaUAt9HPYyJzBUl6hAdxbjAOFGc9dDNOBjb1dY02UsXTOfmtYtZ5UM29h8u5IOqqm3t2i4r_XK17up2nk2cfWt94zfoMTqoTBPdyW730evdYFI-5MPR_WN5O8wtU6TLKy4EhgKzKcj0UDo9lc4oCTMqsIRCTZmVTFFLlLIWrCqkKxh2zIKxBs9YH11sfVfBv69d7PSyjtY1jWmdX0ctBWDCIRn_SxIpGRVCJvLyT5JgojioAkRCz3-hC78ObUqsJXBOUkiWILqFbPAxBlfpVaiXJnwmJ72pSX_XpDc16V1NSXS2FdXOuR8BMAWCA_sC6_qL3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856613913</pqid></control><display><type>article</type><title>Practical Strategies for Power-Efficient Computing Technologies</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</creator><creatorcontrib>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</creatorcontrib><description>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2035451</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blurring ; Cache memory ; Circuit optimization ; Circuits ; CMOS digital integrated circuits ; CMOSFETs ; Computation ; Computer applications ; Delivery systems ; Demand ; Devices ; Efficiency ; Electric potential ; Hardware ; integrated circuit design ; integrated circuit interconnections ; Logic ; Logic devices ; Microelectronics ; parallel machines ; Power dissipation ; power distribution ; Power efficiency ; Silicon ; Studies ; System performance ; Voltage</subject><ispartof>Proceedings of the IEEE, 2010-02, Vol.98 (2), p.215-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</citedby><cites>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Leland</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Montoye, Robert K.</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><creatorcontrib>Ji, Brian L.</creatorcontrib><creatorcontrib>Coteus, Paul W.</creatorcontrib><creatorcontrib>Dennard, Robert H.</creatorcontrib><creatorcontrib>Haensch, Wilfried</creatorcontrib><title>Practical Strategies for Power-Efficient Computing Technologies</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</description><subject>Blurring</subject><subject>Cache memory</subject><subject>Circuit optimization</subject><subject>Circuits</subject><subject>CMOS digital integrated circuits</subject><subject>CMOSFETs</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Delivery systems</subject><subject>Demand</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Hardware</subject><subject>integrated circuit design</subject><subject>integrated circuit interconnections</subject><subject>Logic</subject><subject>Logic devices</subject><subject>Microelectronics</subject><subject>parallel machines</subject><subject>Power dissipation</subject><subject>power distribution</subject><subject>Power efficiency</subject><subject>Silicon</subject><subject>Studies</subject><subject>System performance</subject><subject>Voltage</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkTtPAzEQhC0EEiHwB6A50UBz4MetHxVCp_BSpEQQastxfOGiyznYFyH-PQ6JKCig2W2-md3RIHRK8BUhWF0_jZ9H5RXFWKXBoACyh3oEQOaUAt9HPYyJzBUl6hAdxbjAOFGc9dDNOBjb1dY02UsXTOfmtYtZ5UM29h8u5IOqqm3t2i4r_XK17up2nk2cfWt94zfoMTqoTBPdyW730evdYFI-5MPR_WN5O8wtU6TLKy4EhgKzKcj0UDo9lc4oCTMqsIRCTZmVTFFLlLIWrCqkKxh2zIKxBs9YH11sfVfBv69d7PSyjtY1jWmdX0ctBWDCIRn_SxIpGRVCJvLyT5JgojioAkRCz3-hC78ObUqsJXBOUkiWILqFbPAxBlfpVaiXJnwmJ72pSX_XpDc16V1NSXS2FdXOuR8BMAWCA_sC6_qL3g</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chang, Leland</creator><creator>Frank, David J.</creator><creator>Montoye, Robert K.</creator><creator>Koester, Steven J.</creator><creator>Ji, Brian L.</creator><creator>Coteus, Paul W.</creator><creator>Dennard, Robert H.</creator><creator>Haensch, Wilfried</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Practical Strategies for Power-Efficient Computing Technologies</title><author>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Blurring</topic><topic>Cache memory</topic><topic>Circuit optimization</topic><topic>Circuits</topic><topic>CMOS digital integrated circuits</topic><topic>CMOSFETs</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Delivery systems</topic><topic>Demand</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Hardware</topic><topic>integrated circuit design</topic><topic>integrated circuit interconnections</topic><topic>Logic</topic><topic>Logic devices</topic><topic>Microelectronics</topic><topic>parallel machines</topic><topic>Power dissipation</topic><topic>power distribution</topic><topic>Power efficiency</topic><topic>Silicon</topic><topic>Studies</topic><topic>System performance</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Leland</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Montoye, Robert K.</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><creatorcontrib>Ji, Brian L.</creatorcontrib><creatorcontrib>Coteus, Paul W.</creatorcontrib><creatorcontrib>Dennard, Robert H.</creatorcontrib><creatorcontrib>Haensch, Wilfried</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Leland</au><au>Frank, David J.</au><au>Montoye, Robert K.</au><au>Koester, Steven J.</au><au>Ji, Brian L.</au><au>Coteus, Paul W.</au><au>Dennard, Robert H.</au><au>Haensch, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Strategies for Power-Efficient Computing Technologies</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>98</volume><issue>2</issue><spage>215</spage><epage>236</epage><pages>215-236</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2035451</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2010-02, Vol.98 (2), p.215-236 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_miscellaneous_818832778 |
source | IEEE Electronic Library (IEL) |
subjects | Blurring Cache memory Circuit optimization Circuits CMOS digital integrated circuits CMOSFETs Computation Computer applications Delivery systems Demand Devices Efficiency Electric potential Hardware integrated circuit design integrated circuit interconnections Logic Logic devices Microelectronics parallel machines Power dissipation power distribution Power efficiency Silicon Studies System performance Voltage |
title | Practical Strategies for Power-Efficient Computing Technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Strategies%20for%20Power-Efficient%20Computing%20Technologies&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Chang,%20Leland&rft.date=2010-02-01&rft.volume=98&rft.issue=2&rft.spage=215&rft.epage=236&rft.pages=215-236&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2035451&rft_dat=%3Cproquest_RIE%3E1019659457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856613913&rft_id=info:pmid/&rft_ieee_id=5395765&rfr_iscdi=true |