Practical Strategies for Power-Efficient Computing Technologies

After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2010-02, Vol.98 (2), p.215-236
Hauptverfasser: Chang, Leland, Frank, David J., Montoye, Robert K., Koester, Steven J., Ji, Brian L., Coteus, Paul W., Dennard, Robert H., Haensch, Wilfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 215
container_title Proceedings of the IEEE
container_volume 98
creator Chang, Leland
Frank, David J.
Montoye, Robert K.
Koester, Steven J.
Ji, Brian L.
Coteus, Paul W.
Dennard, Robert H.
Haensch, Wilfried
description After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.
doi_str_mv 10.1109/JPROC.2009.2035451
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_818832778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395765</ieee_id><sourcerecordid>1019659457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</originalsourceid><addsrcrecordid>eNqFkTtPAzEQhC0EEiHwB6A50UBz4MetHxVCp_BSpEQQastxfOGiyznYFyH-PQ6JKCig2W2-md3RIHRK8BUhWF0_jZ9H5RXFWKXBoACyh3oEQOaUAt9HPYyJzBUl6hAdxbjAOFGc9dDNOBjb1dY02UsXTOfmtYtZ5UM29h8u5IOqqm3t2i4r_XK17up2nk2cfWt94zfoMTqoTBPdyW730evdYFI-5MPR_WN5O8wtU6TLKy4EhgKzKcj0UDo9lc4oCTMqsIRCTZmVTFFLlLIWrCqkKxh2zIKxBs9YH11sfVfBv69d7PSyjtY1jWmdX0ctBWDCIRn_SxIpGRVCJvLyT5JgojioAkRCz3-hC78ObUqsJXBOUkiWILqFbPAxBlfpVaiXJnwmJ72pSX_XpDc16V1NSXS2FdXOuR8BMAWCA_sC6_qL3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856613913</pqid></control><display><type>article</type><title>Practical Strategies for Power-Efficient Computing Technologies</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</creator><creatorcontrib>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</creatorcontrib><description>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2035451</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blurring ; Cache memory ; Circuit optimization ; Circuits ; CMOS digital integrated circuits ; CMOSFETs ; Computation ; Computer applications ; Delivery systems ; Demand ; Devices ; Efficiency ; Electric potential ; Hardware ; integrated circuit design ; integrated circuit interconnections ; Logic ; Logic devices ; Microelectronics ; parallel machines ; Power dissipation ; power distribution ; Power efficiency ; Silicon ; Studies ; System performance ; Voltage</subject><ispartof>Proceedings of the IEEE, 2010-02, Vol.98 (2), p.215-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</citedby><cites>FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Leland</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Montoye, Robert K.</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><creatorcontrib>Ji, Brian L.</creatorcontrib><creatorcontrib>Coteus, Paul W.</creatorcontrib><creatorcontrib>Dennard, Robert H.</creatorcontrib><creatorcontrib>Haensch, Wilfried</creatorcontrib><title>Practical Strategies for Power-Efficient Computing Technologies</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</description><subject>Blurring</subject><subject>Cache memory</subject><subject>Circuit optimization</subject><subject>Circuits</subject><subject>CMOS digital integrated circuits</subject><subject>CMOSFETs</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Delivery systems</subject><subject>Demand</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Hardware</subject><subject>integrated circuit design</subject><subject>integrated circuit interconnections</subject><subject>Logic</subject><subject>Logic devices</subject><subject>Microelectronics</subject><subject>parallel machines</subject><subject>Power dissipation</subject><subject>power distribution</subject><subject>Power efficiency</subject><subject>Silicon</subject><subject>Studies</subject><subject>System performance</subject><subject>Voltage</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkTtPAzEQhC0EEiHwB6A50UBz4MetHxVCp_BSpEQQastxfOGiyznYFyH-PQ6JKCig2W2-md3RIHRK8BUhWF0_jZ9H5RXFWKXBoACyh3oEQOaUAt9HPYyJzBUl6hAdxbjAOFGc9dDNOBjb1dY02UsXTOfmtYtZ5UM29h8u5IOqqm3t2i4r_XK17up2nk2cfWt94zfoMTqoTBPdyW730evdYFI-5MPR_WN5O8wtU6TLKy4EhgKzKcj0UDo9lc4oCTMqsIRCTZmVTFFLlLIWrCqkKxh2zIKxBs9YH11sfVfBv69d7PSyjtY1jWmdX0ctBWDCIRn_SxIpGRVCJvLyT5JgojioAkRCz3-hC78ObUqsJXBOUkiWILqFbPAxBlfpVaiXJnwmJ72pSX_XpDc16V1NSXS2FdXOuR8BMAWCA_sC6_qL3g</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chang, Leland</creator><creator>Frank, David J.</creator><creator>Montoye, Robert K.</creator><creator>Koester, Steven J.</creator><creator>Ji, Brian L.</creator><creator>Coteus, Paul W.</creator><creator>Dennard, Robert H.</creator><creator>Haensch, Wilfried</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Practical Strategies for Power-Efficient Computing Technologies</title><author>Chang, Leland ; Frank, David J. ; Montoye, Robert K. ; Koester, Steven J. ; Ji, Brian L. ; Coteus, Paul W. ; Dennard, Robert H. ; Haensch, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f67705403b58256563b8ea985d2708549b3c8392c199cc5c948e430e3c5aca0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Blurring</topic><topic>Cache memory</topic><topic>Circuit optimization</topic><topic>Circuits</topic><topic>CMOS digital integrated circuits</topic><topic>CMOSFETs</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Delivery systems</topic><topic>Demand</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Hardware</topic><topic>integrated circuit design</topic><topic>integrated circuit interconnections</topic><topic>Logic</topic><topic>Logic devices</topic><topic>Microelectronics</topic><topic>parallel machines</topic><topic>Power dissipation</topic><topic>power distribution</topic><topic>Power efficiency</topic><topic>Silicon</topic><topic>Studies</topic><topic>System performance</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Leland</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Montoye, Robert K.</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><creatorcontrib>Ji, Brian L.</creatorcontrib><creatorcontrib>Coteus, Paul W.</creatorcontrib><creatorcontrib>Dennard, Robert H.</creatorcontrib><creatorcontrib>Haensch, Wilfried</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Leland</au><au>Frank, David J.</au><au>Montoye, Robert K.</au><au>Koester, Steven J.</au><au>Ji, Brian L.</au><au>Coteus, Paul W.</au><au>Dennard, Robert H.</au><au>Haensch, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Strategies for Power-Efficient Computing Technologies</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>98</volume><issue>2</issue><spage>215</spage><epage>236</epage><pages>215-236</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off between power and performance is well-recognized, most recent studies focus on the extreme ends of this balance. By concentrating instead on an intermediate range, an ~ 8× improvement in power efficiency can be attained without system performance loss in parallelizable applications-those in which such efficiency is most critical. It is argued that power-efficient hardware is fundamentally limited by voltage scaling, which can be achieved only by blurring the boundaries between devices, circuits, and systems and cannot be realized by addressing any one area alone. By simultaneously considering all three perspectives, the major issues involved in improving power efficiency in light of performance and area constraints are identified. Solutions for the critical elements of a practical computing system are discussed, including the underlying logic device, associated cache memory, off-chip interconnect, and power delivery system. The IBM Blue Gene system is then presented as a case study to exemplify several proposed directions. Going forward, further power reduction may demand radical changes in device technologies and computer architecture; hence, a few such promising methods are briefly considered.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2035451</doi><tpages>22</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2010-02, Vol.98 (2), p.215-236
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_miscellaneous_818832778
source IEEE Electronic Library (IEL)
subjects Blurring
Cache memory
Circuit optimization
Circuits
CMOS digital integrated circuits
CMOSFETs
Computation
Computer applications
Delivery systems
Demand
Devices
Efficiency
Electric potential
Hardware
integrated circuit design
integrated circuit interconnections
Logic
Logic devices
Microelectronics
parallel machines
Power dissipation
power distribution
Power efficiency
Silicon
Studies
System performance
Voltage
title Practical Strategies for Power-Efficient Computing Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Strategies%20for%20Power-Efficient%20Computing%20Technologies&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Chang,%20Leland&rft.date=2010-02-01&rft.volume=98&rft.issue=2&rft.spage=215&rft.epage=236&rft.pages=215-236&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2035451&rft_dat=%3Cproquest_RIE%3E1019659457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856613913&rft_id=info:pmid/&rft_ieee_id=5395765&rfr_iscdi=true