Hantush Well Function revisited
In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153]...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2010-11, Vol.393 (3), p.381-388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 3 |
container_start_page | 381 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 393 |
creator | Veling, E.J.M. Maas, C. |
description | In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear. |
doi_str_mv | 10.1016/j.jhydrol.2010.08.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_817605386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410005500</els_id><sourcerecordid>817605386</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQexFPO2aSbJJ9iRSrBUKXhSPIeYPzbLdrcluod_elBavzmVg-L2ZeQ-hW8AlYOCPTdms9zb2bUlwnmFZYkrP0ASkqAsisDhHE4wJKYDX7BJdpdTgXJSyCbpb6m4Y03r25dp2thg7M4S-m0W3CykMzl6jC6_b5G5OfYo-Fy8f82Wxen99mz-vCs0YDIVgFjh3tWTCGwFC4-obmGYOA6Oy5qCdpdQRKwgl4KnHAJ4wzrS3TBNBp-jhuHcb-5_RpUFtQjL5J925fkxKguC4opJnsjqSJvYpRefVNoaNjnsFWB3yUI065aEOeSgsVfaadfenCzoZ3fqoOxPSn5hQKgSrZOaejpzLdnfBRZVMcJ1xNkRnBmX78M-lX_TFdow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817605386</pqid></control><display><type>article</type><title>Hantush Well Function revisited</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Veling, E.J.M. ; Maas, C.</creator><creatorcontrib>Veling, E.J.M. ; Maas, C.</creatorcontrib><description>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.08.033</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aquifers ; Bears ; Closed-form representation ; Earth sciences ; Earth, ocean, space ; Errors ; Exact sciences and technology ; Generalized Incomplete Gamma Function ; Hantush Well Function ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Leaky aquifer ; Mathematical analysis ; Mathematical models ; Pumping test ; Representations ; Tables (data) ; Time series analysis</subject><ispartof>Journal of hydrology (Amsterdam), 2010-11, Vol.393 (3), p.381-388</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</citedby><cites>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2010.08.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23377458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Veling, E.J.M.</creatorcontrib><creatorcontrib>Maas, C.</creatorcontrib><title>Hantush Well Function revisited</title><title>Journal of hydrology (Amsterdam)</title><description>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</description><subject>Aquifers</subject><subject>Bears</subject><subject>Closed-form representation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Generalized Incomplete Gamma Function</subject><subject>Hantush Well Function</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Leaky aquifer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pumping test</subject><subject>Representations</subject><subject>Tables (data)</subject><subject>Time series analysis</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQexFPO2aSbJJ9iRSrBUKXhSPIeYPzbLdrcluod_elBavzmVg-L2ZeQ-hW8AlYOCPTdms9zb2bUlwnmFZYkrP0ASkqAsisDhHE4wJKYDX7BJdpdTgXJSyCbpb6m4Y03r25dp2thg7M4S-m0W3CykMzl6jC6_b5G5OfYo-Fy8f82Wxen99mz-vCs0YDIVgFjh3tWTCGwFC4-obmGYOA6Oy5qCdpdQRKwgl4KnHAJ4wzrS3TBNBp-jhuHcb-5_RpUFtQjL5J925fkxKguC4opJnsjqSJvYpRefVNoaNjnsFWB3yUI065aEOeSgsVfaadfenCzoZ3fqoOxPSn5hQKgSrZOaejpzLdnfBRZVMcJ1xNkRnBmX78M-lX_TFdow</recordid><startdate>20101108</startdate><enddate>20101108</enddate><creator>Veling, E.J.M.</creator><creator>Maas, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101108</creationdate><title>Hantush Well Function revisited</title><author>Veling, E.J.M. ; Maas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aquifers</topic><topic>Bears</topic><topic>Closed-form representation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Generalized Incomplete Gamma Function</topic><topic>Hantush Well Function</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Leaky aquifer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pumping test</topic><topic>Representations</topic><topic>Tables (data)</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veling, E.J.M.</creatorcontrib><creatorcontrib>Maas, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veling, E.J.M.</au><au>Maas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hantush Well Function revisited</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-11-08</date><risdate>2010</risdate><volume>393</volume><issue>3</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.08.033</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2010-11, Vol.393 (3), p.381-388 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_817605386 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Aquifers Bears Closed-form representation Earth sciences Earth, ocean, space Errors Exact sciences and technology Generalized Incomplete Gamma Function Hantush Well Function Hydrogeology Hydrology Hydrology. Hydrogeology Leaky aquifer Mathematical analysis Mathematical models Pumping test Representations Tables (data) Time series analysis |
title | Hantush Well Function revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hantush%20Well%20Function%20revisited&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Veling,%20E.J.M.&rft.date=2010-11-08&rft.volume=393&rft.issue=3&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2010.08.033&rft_dat=%3Cproquest_cross%3E817605386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817605386&rft_id=info:pmid/&rft_els_id=S0022169410005500&rfr_iscdi=true |