Hantush Well Function revisited

In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2010-11, Vol.393 (3), p.381-388
Hauptverfasser: Veling, E.J.M., Maas, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 381
container_title Journal of hydrology (Amsterdam)
container_volume 393
creator Veling, E.J.M.
Maas, C.
description In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.
doi_str_mv 10.1016/j.jhydrol.2010.08.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_817605386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410005500</els_id><sourcerecordid>817605386</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQexFPO2aSbJJ9iRSrBUKXhSPIeYPzbLdrcluod_elBavzmVg-L2ZeQ-hW8AlYOCPTdms9zb2bUlwnmFZYkrP0ASkqAsisDhHE4wJKYDX7BJdpdTgXJSyCbpb6m4Y03r25dp2thg7M4S-m0W3CykMzl6jC6_b5G5OfYo-Fy8f82Wxen99mz-vCs0YDIVgFjh3tWTCGwFC4-obmGYOA6Oy5qCdpdQRKwgl4KnHAJ4wzrS3TBNBp-jhuHcb-5_RpUFtQjL5J925fkxKguC4opJnsjqSJvYpRefVNoaNjnsFWB3yUI065aEOeSgsVfaadfenCzoZ3fqoOxPSn5hQKgSrZOaejpzLdnfBRZVMcJ1xNkRnBmX78M-lX_TFdow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817605386</pqid></control><display><type>article</type><title>Hantush Well Function revisited</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Veling, E.J.M. ; Maas, C.</creator><creatorcontrib>Veling, E.J.M. ; Maas, C.</creatorcontrib><description>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.08.033</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aquifers ; Bears ; Closed-form representation ; Earth sciences ; Earth, ocean, space ; Errors ; Exact sciences and technology ; Generalized Incomplete Gamma Function ; Hantush Well Function ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Leaky aquifer ; Mathematical analysis ; Mathematical models ; Pumping test ; Representations ; Tables (data) ; Time series analysis</subject><ispartof>Journal of hydrology (Amsterdam), 2010-11, Vol.393 (3), p.381-388</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</citedby><cites>FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2010.08.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23377458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Veling, E.J.M.</creatorcontrib><creatorcontrib>Maas, C.</creatorcontrib><title>Hantush Well Function revisited</title><title>Journal of hydrology (Amsterdam)</title><description>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</description><subject>Aquifers</subject><subject>Bears</subject><subject>Closed-form representation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Generalized Incomplete Gamma Function</subject><subject>Hantush Well Function</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Leaky aquifer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pumping test</subject><subject>Representations</subject><subject>Tables (data)</subject><subject>Time series analysis</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQexFPO2aSbJJ9iRSrBUKXhSPIeYPzbLdrcluod_elBavzmVg-L2ZeQ-hW8AlYOCPTdms9zb2bUlwnmFZYkrP0ASkqAsisDhHE4wJKYDX7BJdpdTgXJSyCbpb6m4Y03r25dp2thg7M4S-m0W3CykMzl6jC6_b5G5OfYo-Fy8f82Wxen99mz-vCs0YDIVgFjh3tWTCGwFC4-obmGYOA6Oy5qCdpdQRKwgl4KnHAJ4wzrS3TBNBp-jhuHcb-5_RpUFtQjL5J925fkxKguC4opJnsjqSJvYpRefVNoaNjnsFWB3yUI065aEOeSgsVfaadfenCzoZ3fqoOxPSn5hQKgSrZOaejpzLdnfBRZVMcJ1xNkRnBmX78M-lX_TFdow</recordid><startdate>20101108</startdate><enddate>20101108</enddate><creator>Veling, E.J.M.</creator><creator>Maas, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101108</creationdate><title>Hantush Well Function revisited</title><author>Veling, E.J.M. ; Maas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-74d166e9847fc717a05b14a4e01438961aed33e2d72321f3f011f2464afd4a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aquifers</topic><topic>Bears</topic><topic>Closed-form representation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Generalized Incomplete Gamma Function</topic><topic>Hantush Well Function</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Leaky aquifer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pumping test</topic><topic>Representations</topic><topic>Tables (data)</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veling, E.J.M.</creatorcontrib><creatorcontrib>Maas, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veling, E.J.M.</au><au>Maas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hantush Well Function revisited</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-11-08</date><risdate>2010</risdate><volume>393</volume><issue>3</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>In this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 338, 152–153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush–Jacob well functions. Journal of Hydrology 318, 173–183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179–183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear’s table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8–6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702–714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.08.033</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2010-11, Vol.393 (3), p.381-388
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_817605386
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Aquifers
Bears
Closed-form representation
Earth sciences
Earth, ocean, space
Errors
Exact sciences and technology
Generalized Incomplete Gamma Function
Hantush Well Function
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Leaky aquifer
Mathematical analysis
Mathematical models
Pumping test
Representations
Tables (data)
Time series analysis
title Hantush Well Function revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hantush%20Well%20Function%20revisited&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Veling,%20E.J.M.&rft.date=2010-11-08&rft.volume=393&rft.issue=3&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2010.08.033&rft_dat=%3Cproquest_cross%3E817605386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817605386&rft_id=info:pmid/&rft_els_id=S0022169410005500&rfr_iscdi=true