Behavioural and biomaterial coevolution in spider orb webs
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous bi...
Gespeichert in:
Veröffentlicht in: | Journal of evolutionary biology 2010-09, Vol.23 (9), p.1839-1856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1856 |
---|---|
container_issue | 9 |
container_start_page | 1839 |
container_title | Journal of evolutionary biology |
container_volume | 23 |
creator | SENSENIG, A AGNARSSON, I BLACKLEDGE, T.A |
description | Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co-evolve to fine-tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb-weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable 'sparser' architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine-tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin. |
doi_str_mv | 10.1111/j.1420-9101.2010.02048.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_817603365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>817603363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5338-28a3dac1a4238d47f8f2cca5842212489517d78f679e9b8db9bf2ca5620452b63</originalsourceid><addsrcrecordid>eNqNkclOwzAQhi0EYn8FiLhwSvESL0HiQKuyCYkDIHGznMQBR2lc7KbL2-OQ0gMX8MUznu8fe_wDECE4QGFdVAOUYBinCKIBhuEUYpiIwXIL7G8K2yEOpRgy9LYHDryvIEQsoXQX7GHIcCposg8uh_pDzY1tnaoj1RRRZuxEzbQzIc-tntu6nRnbRKaJ_NQU2kXWZdFCZ_4I7JSq9vp4vR-C15vxy-gufny6vR9dP8Y5JUTEWChSqBypBBNRJLwUJc5zRUWCMcKJSCniBRcl46lOM1FkaRYARVkYieKMkUNw3vedOvvZaj-TE-NzXdeq0bb1UiDOICGM_pskf5I8vIvTFHe3n_0iq_BZTRg4QIwgLjgMkOih3FnvnS7l1JmJciuJoOwck5XsjJGdMbJzTH47JpdBerLu32YTXWyEPxYF4KoHFqbWq383lg_jYRcF_WmvL5WV6t0ZL1-fA0kgEjwVnJAvSXKqlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746317870</pqid></control><display><type>article</type><title>Behavioural and biomaterial coevolution in spider orb webs</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>SENSENIG, A ; AGNARSSON, I ; BLACKLEDGE, T.A</creator><creatorcontrib>SENSENIG, A ; AGNARSSON, I ; BLACKLEDGE, T.A</creatorcontrib><description>Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co-evolve to fine-tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb-weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable 'sparser' architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine-tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/j.1420-9101.2010.02048.x</identifier><identifier>PMID: 20629854</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animal behavior ; Animals ; Araneae ; Biocompatible Materials - chemistry ; Biological Evolution ; Biomaterials ; biomechanics ; Biophysics ; Body size ; Coevolution ; Energy ; Evolutionary biology ; Fecundity ; Flight ; functional morphology ; Keratin ; Mollusca ; Muscles ; Phylogeny ; Predatory Behavior - physiology ; Prey ; Regression Analysis ; Silk ; Silk - genetics ; Spiders ; Spiders - classification ; Spiders - physiology ; Spinning ; Tendons ; tensile properties ; Traps ; web ; Webs</subject><ispartof>Journal of evolutionary biology, 2010-09, Vol.23 (9), p.1839-1856</ispartof><rights>2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology</rights><rights>Journal compilation © 2010 European Society for Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5338-28a3dac1a4238d47f8f2cca5842212489517d78f679e9b8db9bf2ca5620452b63</citedby><cites>FETCH-LOGICAL-c5338-28a3dac1a4238d47f8f2cca5842212489517d78f679e9b8db9bf2ca5620452b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1420-9101.2010.02048.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1420-9101.2010.02048.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20629854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SENSENIG, A</creatorcontrib><creatorcontrib>AGNARSSON, I</creatorcontrib><creatorcontrib>BLACKLEDGE, T.A</creatorcontrib><title>Behavioural and biomaterial coevolution in spider orb webs</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co-evolve to fine-tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb-weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable 'sparser' architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine-tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Araneae</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological Evolution</subject><subject>Biomaterials</subject><subject>biomechanics</subject><subject>Biophysics</subject><subject>Body size</subject><subject>Coevolution</subject><subject>Energy</subject><subject>Evolutionary biology</subject><subject>Fecundity</subject><subject>Flight</subject><subject>functional morphology</subject><subject>Keratin</subject><subject>Mollusca</subject><subject>Muscles</subject><subject>Phylogeny</subject><subject>Predatory Behavior - physiology</subject><subject>Prey</subject><subject>Regression Analysis</subject><subject>Silk</subject><subject>Silk - genetics</subject><subject>Spiders</subject><subject>Spiders - classification</subject><subject>Spiders - physiology</subject><subject>Spinning</subject><subject>Tendons</subject><subject>tensile properties</subject><subject>Traps</subject><subject>web</subject><subject>Webs</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkclOwzAQhi0EYn8FiLhwSvESL0HiQKuyCYkDIHGznMQBR2lc7KbL2-OQ0gMX8MUznu8fe_wDECE4QGFdVAOUYBinCKIBhuEUYpiIwXIL7G8K2yEOpRgy9LYHDryvIEQsoXQX7GHIcCposg8uh_pDzY1tnaoj1RRRZuxEzbQzIc-tntu6nRnbRKaJ_NQU2kXWZdFCZ_4I7JSq9vp4vR-C15vxy-gufny6vR9dP8Y5JUTEWChSqBypBBNRJLwUJc5zRUWCMcKJSCniBRcl46lOM1FkaRYARVkYieKMkUNw3vedOvvZaj-TE-NzXdeq0bb1UiDOICGM_pskf5I8vIvTFHe3n_0iq_BZTRg4QIwgLjgMkOih3FnvnS7l1JmJciuJoOwck5XsjJGdMbJzTH47JpdBerLu32YTXWyEPxYF4KoHFqbWq383lg_jYRcF_WmvL5WV6t0ZL1-fA0kgEjwVnJAvSXKqlQ</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>SENSENIG, A</creator><creator>AGNARSSON, I</creator><creator>BLACKLEDGE, T.A</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201009</creationdate><title>Behavioural and biomaterial coevolution in spider orb webs</title><author>SENSENIG, A ; AGNARSSON, I ; BLACKLEDGE, T.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5338-28a3dac1a4238d47f8f2cca5842212489517d78f679e9b8db9bf2ca5620452b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Araneae</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological Evolution</topic><topic>Biomaterials</topic><topic>biomechanics</topic><topic>Biophysics</topic><topic>Body size</topic><topic>Coevolution</topic><topic>Energy</topic><topic>Evolutionary biology</topic><topic>Fecundity</topic><topic>Flight</topic><topic>functional morphology</topic><topic>Keratin</topic><topic>Mollusca</topic><topic>Muscles</topic><topic>Phylogeny</topic><topic>Predatory Behavior - physiology</topic><topic>Prey</topic><topic>Regression Analysis</topic><topic>Silk</topic><topic>Silk - genetics</topic><topic>Spiders</topic><topic>Spiders - classification</topic><topic>Spiders - physiology</topic><topic>Spinning</topic><topic>Tendons</topic><topic>tensile properties</topic><topic>Traps</topic><topic>web</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SENSENIG, A</creatorcontrib><creatorcontrib>AGNARSSON, I</creatorcontrib><creatorcontrib>BLACKLEDGE, T.A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SENSENIG, A</au><au>AGNARSSON, I</au><au>BLACKLEDGE, T.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioural and biomaterial coevolution in spider orb webs</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2010-09</date><risdate>2010</risdate><volume>23</volume><issue>9</issue><spage>1839</spage><epage>1856</epage><pages>1839-1856</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co-evolve to fine-tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb-weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable 'sparser' architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine-tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20629854</pmid><doi>10.1111/j.1420-9101.2010.02048.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-061X |
ispartof | Journal of evolutionary biology, 2010-09, Vol.23 (9), p.1839-1856 |
issn | 1010-061X 1420-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_817603365 |
source | MEDLINE; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animal behavior Animals Araneae Biocompatible Materials - chemistry Biological Evolution Biomaterials biomechanics Biophysics Body size Coevolution Energy Evolutionary biology Fecundity Flight functional morphology Keratin Mollusca Muscles Phylogeny Predatory Behavior - physiology Prey Regression Analysis Silk Silk - genetics Spiders Spiders - classification Spiders - physiology Spinning Tendons tensile properties Traps web Webs |
title | Behavioural and biomaterial coevolution in spider orb webs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioural%20and%20biomaterial%20coevolution%20in%20spider%20orb%20webs&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=SENSENIG,%20A&rft.date=2010-09&rft.volume=23&rft.issue=9&rft.spage=1839&rft.epage=1856&rft.pages=1839-1856&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/j.1420-9101.2010.02048.x&rft_dat=%3Cproquest_cross%3E817603363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746317870&rft_id=info:pmid/20629854&rfr_iscdi=true |