Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

Understanding of the interactions between estradiol (E2) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2011-01, Vol.208 (1), p.1-9
Hauptverfasser: Mendoza, Rhone A, Enriquez, Marlene I, Mejia, Sylvia M, Moody, Emily E, Thordarson, Gudmundur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Journal of endocrinology
container_volume 208
creator Mendoza, Rhone A
Enriquez, Marlene I
Mejia, Sylvia M
Moody, Emily E
Thordarson, Gudmundur
description Understanding of the interactions between estradiol (E2) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E2 did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.
doi_str_mv 10.1677/JOE-10-0235
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_816529860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>816529860</sourcerecordid><originalsourceid>FETCH-LOGICAL-b325t-505516190be56137ab06b79df344c7bb2b5eb55d16bd0c1083bad736c89f28a63</originalsourceid><addsrcrecordid>eNpdkc1uEzEQgC1ERUPhxB35ggCppv5Z27tHFCVtqqJKCM4r2-vdGG3sYHsVceaJyoP0mXBIKqqeZkb-vtGMB4A3BH8iQsqL69sFIhhhyvgzMCOVbJCoMX8OZhhTirBs-Cl4mdIPjAknkr0ApxQ3shIVnoHfK59tVCa74BPUNu-s9XB1uUSrc2hTjmEodbTGbnOI6P4Oflh8vb_7eA6V72BJ_0C3fx-mUWXnBzjEsMvrC7UNRUguwdDDL_MlknA9bZSHOlqVMjTKGxuhseOYXoGTXo3Jvj7GM_B9ufg2v0I3t5er-ecbpBnlGXHMORGkwdpyQZhUGgstm65nVWWk1lRzqznviNAdNgTXTKtOMmHqpqe1EuwMvD_03cbwcyrLtRuX9hMob8OU2poITpta4EK-PZKT3tiu3Ua3UfFX-_BvBXh3BFQyauxjWcel_xyrpWBNXTh64NZuWO9ctK12IRlnfXa9M6oluN0fsX10xCKRg_SEfej-yNnn_5y_UUadQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816529860</pqid></control><display><type>article</type><title>Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mendoza, Rhone A ; Enriquez, Marlene I ; Mejia, Sylvia M ; Moody, Emily E ; Thordarson, Gudmundur</creator><creatorcontrib>Mendoza, Rhone A ; Enriquez, Marlene I ; Mejia, Sylvia M ; Moody, Emily E ; Thordarson, Gudmundur</creatorcontrib><description>Understanding of the interactions between estradiol (E2) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E2 did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.</description><identifier>ISSN: 0022-0795</identifier><identifier>EISSN: 1479-6805</identifier><identifier>DOI: 10.1677/JOE-10-0235</identifier><identifier>PMID: 20974640</identifier><identifier>CODEN: JOENAK</identifier><language>eng</language><publisher>Bristol: BioScientifica</publisher><subject>Analysis of Variance ; Apoptosis - physiology ; Biological and medical sciences ; Blotting, Western ; Cell Count ; Cell Line, Tumor ; Cell Proliferation ; Enzyme-Linked Immunosorbent Assay ; Estrogen Receptor alpha - genetics ; Estrogen Receptor alpha - metabolism ; Estrogen Receptor beta - genetics ; Estrogen Receptor beta - metabolism ; Fundamental and applied biological sciences. Psychology ; Gynecology. Andrology. Obstetrics ; Humans ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Mammary gland diseases ; Medical sciences ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation - physiology ; Receptor, IGF Type 1 - genetics ; Receptor, IGF Type 1 - metabolism ; Regular papers ; RNA, Small Interfering ; Signal Transduction - physiology ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; Vertebrates: endocrinology</subject><ispartof>Journal of endocrinology, 2011-01, Vol.208 (1), p.1-9</ispartof><rights>2011 Society for Endocrinology</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23876398$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendoza, Rhone A</creatorcontrib><creatorcontrib>Enriquez, Marlene I</creatorcontrib><creatorcontrib>Mejia, Sylvia M</creatorcontrib><creatorcontrib>Moody, Emily E</creatorcontrib><creatorcontrib>Thordarson, Gudmundur</creatorcontrib><title>Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells</title><title>Journal of endocrinology</title><addtitle>J Endocrinol</addtitle><description>Understanding of the interactions between estradiol (E2) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E2 did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.</description><subject>Analysis of Variance</subject><subject>Apoptosis - physiology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cell Count</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Estrogen Receptor alpha - genetics</subject><subject>Estrogen Receptor alpha - metabolism</subject><subject>Estrogen Receptor beta - genetics</subject><subject>Estrogen Receptor beta - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Mammary gland diseases</subject><subject>Medical sciences</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation - physiology</subject><subject>Receptor, IGF Type 1 - genetics</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Regular papers</subject><subject>RNA, Small Interfering</subject><subject>Signal Transduction - physiology</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>Vertebrates: endocrinology</subject><issn>0022-0795</issn><issn>1479-6805</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1uEzEQgC1ERUPhxB35ggCppv5Z27tHFCVtqqJKCM4r2-vdGG3sYHsVceaJyoP0mXBIKqqeZkb-vtGMB4A3BH8iQsqL69sFIhhhyvgzMCOVbJCoMX8OZhhTirBs-Cl4mdIPjAknkr0ApxQ3shIVnoHfK59tVCa74BPUNu-s9XB1uUSrc2hTjmEodbTGbnOI6P4Oflh8vb_7eA6V72BJ_0C3fx-mUWXnBzjEsMvrC7UNRUguwdDDL_MlknA9bZSHOlqVMjTKGxuhseOYXoGTXo3Jvj7GM_B9ufg2v0I3t5er-ecbpBnlGXHMORGkwdpyQZhUGgstm65nVWWk1lRzqznviNAdNgTXTKtOMmHqpqe1EuwMvD_03cbwcyrLtRuX9hMob8OU2poITpta4EK-PZKT3tiu3Ua3UfFX-_BvBXh3BFQyauxjWcel_xyrpWBNXTh64NZuWO9ctK12IRlnfXa9M6oluN0fsX10xCKRg_SEfej-yNnn_5y_UUadQg</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Mendoza, Rhone A</creator><creator>Enriquez, Marlene I</creator><creator>Mejia, Sylvia M</creator><creator>Moody, Emily E</creator><creator>Thordarson, Gudmundur</creator><general>BioScientifica</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells</title><author>Mendoza, Rhone A ; Enriquez, Marlene I ; Mejia, Sylvia M ; Moody, Emily E ; Thordarson, Gudmundur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b325t-505516190be56137ab06b79df344c7bb2b5eb55d16bd0c1083bad736c89f28a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of Variance</topic><topic>Apoptosis - physiology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cell Count</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Estrogen Receptor alpha - genetics</topic><topic>Estrogen Receptor alpha - metabolism</topic><topic>Estrogen Receptor beta - genetics</topic><topic>Estrogen Receptor beta - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Mammary gland diseases</topic><topic>Medical sciences</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation - physiology</topic><topic>Receptor, IGF Type 1 - genetics</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Regular papers</topic><topic>RNA, Small Interfering</topic><topic>Signal Transduction - physiology</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendoza, Rhone A</creatorcontrib><creatorcontrib>Enriquez, Marlene I</creatorcontrib><creatorcontrib>Mejia, Sylvia M</creatorcontrib><creatorcontrib>Moody, Emily E</creatorcontrib><creatorcontrib>Thordarson, Gudmundur</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendoza, Rhone A</au><au>Enriquez, Marlene I</au><au>Mejia, Sylvia M</au><au>Moody, Emily E</au><au>Thordarson, Gudmundur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells</atitle><jtitle>Journal of endocrinology</jtitle><addtitle>J Endocrinol</addtitle><date>2011-01</date><risdate>2011</risdate><volume>208</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0022-0795</issn><eissn>1479-6805</eissn><coden>JOENAK</coden><abstract>Understanding of the interactions between estradiol (E2) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E2 did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.</abstract><cop>Bristol</cop><pub>BioScientifica</pub><pmid>20974640</pmid><doi>10.1677/JOE-10-0235</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0795
ispartof Journal of endocrinology, 2011-01, Vol.208 (1), p.1-9
issn 0022-0795
1479-6805
language eng
recordid cdi_proquest_miscellaneous_816529860
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of Variance
Apoptosis - physiology
Biological and medical sciences
Blotting, Western
Cell Count
Cell Line, Tumor
Cell Proliferation
Enzyme-Linked Immunosorbent Assay
Estrogen Receptor alpha - genetics
Estrogen Receptor alpha - metabolism
Estrogen Receptor beta - genetics
Estrogen Receptor beta - metabolism
Fundamental and applied biological sciences. Psychology
Gynecology. Andrology. Obstetrics
Humans
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - metabolism
Mammary gland diseases
Medical sciences
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation - physiology
Receptor, IGF Type 1 - genetics
Receptor, IGF Type 1 - metabolism
Regular papers
RNA, Small Interfering
Signal Transduction - physiology
Transfection
Tumor Cells, Cultured
Tumor Suppressor Protein p53 - metabolism
Tumors
Vertebrates: endocrinology
title Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20IGF-I,%20estrogen%20receptor-%CE%B1%20(ER%CE%B1),%20and%20ER%CE%B2%20in%20regulating%20growth/apoptosis%20of%20MCF-7%20human%20breast%20cancer%20cells&rft.jtitle=Journal%20of%20endocrinology&rft.au=Mendoza,%20Rhone%20A&rft.date=2011-01&rft.volume=208&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0022-0795&rft.eissn=1479-6805&rft.coden=JOENAK&rft_id=info:doi/10.1677/JOE-10-0235&rft_dat=%3Cproquest_pubme%3E816529860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816529860&rft_id=info:pmid/20974640&rfr_iscdi=true