Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb

Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of nutrition 2010-12, Vol.104 (12), p.1771-1779
Hauptverfasser: Peoples, Gregory E., McLennan, Peter L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 12
container_start_page 1771
container_title British journal of nutrition
container_volume 104
creator Peoples, Gregory E.
McLennan, Peter L.
description Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P 
doi_str_mv 10.1017/S0007114510002928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815965143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114510002928</cupid><sourcerecordid>2203737081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-5eaa41589d0a05c23688b65e658e45299d9034f9adfb5ebc56f06f5de31823ad3</originalsourceid><addsrcrecordid>eNp1kdtu1DAQhiNERZfCA3ADFhLqDQEfYie-RAuUogqESsWl5diTXbc5bO1k1b4Iz9uJdmklEFce-__m9xyy7AWj7xhl5ftzSmnJWCEZBlzz6lG2YEUpc64Uf5wtZjmf9cPsaUqXeK0Y1U-yQ06VZkzIRfb7Y4DRxlvShLQmQ2hJBD85SCRdQYtSS7opuRbIcHO7gp64oU9TtxnD0L8lmzhsg0e4sWNYTYDJKaTR9g6I7T0J3UygjlljtG4M7cw4fMMvQ0_GNd7tOIfbsB3IOvS-DV39LDtobJvg-f48yi4-f_q5_JKffT85XX44y53idMwlWFswWWlPLZWOC1VVtZKgZAWF5Fp7TUXRaOubWkLtpGqoaqQHwSourBdH2fHOF-u8niCNpgvJQdvaHoYpmYpJrSQrBJKv_yIvhyn2WBxCimkuqhIhtoNcHFKK0JhNDB2O1zBq5pWZf1aGOS_3xlPdgb_P-LMjBN7sAZucbZuI4w3pgRNKciZmo3zH4Qbg5l638cqoUpTSqJMf5tfyGyur8qtZIv9qxzd2MHYV0fPinFMmKHZDNddIiH07tqtj8Ct4aPr_Dd0BOynHvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816192387</pqid></control><display><type>article</type><title>Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Peoples, Gregory E. ; McLennan, Peter L.</creator><creatorcontrib>Peoples, Gregory E. ; McLennan, Peter L.</creatorcontrib><description>Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P &lt; 0·05) in red and white skeletal muscle membranes. There was no difference in initial twitch tension but the n-3 PUFA group maintained greater twitch tension within all contraction bouts and recovered better during rest to produce greater twitch tension throughout the final contraction bout (P &lt; 0·05). Hindlimb oxygen consumption during contraction was significantly lower in the n-3 PUFA group compared with the SF group, producing a significantly higher O2 efficiency index compared with both SF and n-6 PUFA groups (P &lt; 0·05). Resting oxygen consumption was increased in recovery in the SF group (P &lt; 0·05) but did not change in the n-3 PUFA group. Membrane incorporation of n-3 PUFA DHA following fish oil feeding was associated with increased efficiency of muscle O2 consumption and promoted resistance to muscle fatigue.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114510002928</identifier><identifier>PMID: 20691135</identifier><identifier>CODEN: BJNUAV</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>animal models ; Animals ; Biological and medical sciences ; Cell Membrane - chemistry ; DHA ; Diet ; dietary fat ; Fatigue ; Fatty acids ; Fatty Acids - analysis ; Fatty Acids - metabolism ; Feeding. Feeding behavior ; Fish oil ; Fish oils ; Fish Oils - administration &amp; dosage ; Fish Oils - pharmacology ; Fundamental and applied biological sciences. Psychology ; Hindlimb - drug effects ; Hindlimb - physiology ; human nutrition ; in vivo studies ; legs ; Linoleic Acid - pharmacology ; Male ; Membranes ; Metabolism and Metabolic Studies ; muscle contraction ; Muscle Contraction - drug effects ; Muscle fatigue ; Muscle Fatigue - drug effects ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; n-3 PUFA ; Nutrition research ; omega-3 fatty acids ; omega-6 fatty acids ; Oxygen ; Oxygen consumption ; Oxygen Consumption - drug effects ; Oxygen Consumption - physiology ; polyunsaturated fatty acids ; Rats ; Rats, Wistar ; Rodents ; saturated fatty acids ; skeletal muscle ; Tension ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>British journal of nutrition, 2010-12, Vol.104 (12), p.1771-1779</ispartof><rights>Copyright © The Authors 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-5eaa41589d0a05c23688b65e658e45299d9034f9adfb5ebc56f06f5de31823ad3</citedby><cites>FETCH-LOGICAL-c620t-5eaa41589d0a05c23688b65e658e45299d9034f9adfb5ebc56f06f5de31823ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114510002928/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23652138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20691135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peoples, Gregory E.</creatorcontrib><creatorcontrib>McLennan, Peter L.</creatorcontrib><title>Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P &lt; 0·05) in red and white skeletal muscle membranes. There was no difference in initial twitch tension but the n-3 PUFA group maintained greater twitch tension within all contraction bouts and recovered better during rest to produce greater twitch tension throughout the final contraction bout (P &lt; 0·05). Hindlimb oxygen consumption during contraction was significantly lower in the n-3 PUFA group compared with the SF group, producing a significantly higher O2 efficiency index compared with both SF and n-6 PUFA groups (P &lt; 0·05). Resting oxygen consumption was increased in recovery in the SF group (P &lt; 0·05) but did not change in the n-3 PUFA group. Membrane incorporation of n-3 PUFA DHA following fish oil feeding was associated with increased efficiency of muscle O2 consumption and promoted resistance to muscle fatigue.</description><subject>animal models</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - chemistry</subject><subject>DHA</subject><subject>Diet</subject><subject>dietary fat</subject><subject>Fatigue</subject><subject>Fatty acids</subject><subject>Fatty Acids - analysis</subject><subject>Fatty Acids - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Fish oil</subject><subject>Fish oils</subject><subject>Fish Oils - administration &amp; dosage</subject><subject>Fish Oils - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hindlimb - drug effects</subject><subject>Hindlimb - physiology</subject><subject>human nutrition</subject><subject>in vivo studies</subject><subject>legs</subject><subject>Linoleic Acid - pharmacology</subject><subject>Male</subject><subject>Membranes</subject><subject>Metabolism and Metabolic Studies</subject><subject>muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle fatigue</subject><subject>Muscle Fatigue - drug effects</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>n-3 PUFA</subject><subject>Nutrition research</subject><subject>omega-3 fatty acids</subject><subject>omega-6 fatty acids</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Oxygen Consumption - drug effects</subject><subject>Oxygen Consumption - physiology</subject><subject>polyunsaturated fatty acids</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>saturated fatty acids</subject><subject>skeletal muscle</subject><subject>Tension</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kdtu1DAQhiNERZfCA3ADFhLqDQEfYie-RAuUogqESsWl5diTXbc5bO1k1b4Iz9uJdmklEFce-__m9xyy7AWj7xhl5ftzSmnJWCEZBlzz6lG2YEUpc64Uf5wtZjmf9cPsaUqXeK0Y1U-yQ06VZkzIRfb7Y4DRxlvShLQmQ2hJBD85SCRdQYtSS7opuRbIcHO7gp64oU9TtxnD0L8lmzhsg0e4sWNYTYDJKaTR9g6I7T0J3UygjlljtG4M7cw4fMMvQ0_GNd7tOIfbsB3IOvS-DV39LDtobJvg-f48yi4-f_q5_JKffT85XX44y53idMwlWFswWWlPLZWOC1VVtZKgZAWF5Fp7TUXRaOubWkLtpGqoaqQHwSourBdH2fHOF-u8niCNpgvJQdvaHoYpmYpJrSQrBJKv_yIvhyn2WBxCimkuqhIhtoNcHFKK0JhNDB2O1zBq5pWZf1aGOS_3xlPdgb_P-LMjBN7sAZucbZuI4w3pgRNKciZmo3zH4Qbg5l638cqoUpTSqJMf5tfyGyur8qtZIv9qxzd2MHYV0fPinFMmKHZDNddIiH07tqtj8Ct4aPr_Dd0BOynHvg</recordid><startdate>20101228</startdate><enddate>20101228</enddate><creator>Peoples, Gregory E.</creator><creator>McLennan, Peter L.</creator><general>Cambridge University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20101228</creationdate><title>Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb</title><author>Peoples, Gregory E. ; McLennan, Peter L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-5eaa41589d0a05c23688b65e658e45299d9034f9adfb5ebc56f06f5de31823ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>animal models</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - chemistry</topic><topic>DHA</topic><topic>Diet</topic><topic>dietary fat</topic><topic>Fatigue</topic><topic>Fatty acids</topic><topic>Fatty Acids - analysis</topic><topic>Fatty Acids - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Fish oil</topic><topic>Fish oils</topic><topic>Fish Oils - administration &amp; dosage</topic><topic>Fish Oils - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hindlimb - drug effects</topic><topic>Hindlimb - physiology</topic><topic>human nutrition</topic><topic>in vivo studies</topic><topic>legs</topic><topic>Linoleic Acid - pharmacology</topic><topic>Male</topic><topic>Membranes</topic><topic>Metabolism and Metabolic Studies</topic><topic>muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle fatigue</topic><topic>Muscle Fatigue - drug effects</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>n-3 PUFA</topic><topic>Nutrition research</topic><topic>omega-3 fatty acids</topic><topic>omega-6 fatty acids</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Oxygen Consumption - drug effects</topic><topic>Oxygen Consumption - physiology</topic><topic>polyunsaturated fatty acids</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>saturated fatty acids</topic><topic>skeletal muscle</topic><topic>Tension</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peoples, Gregory E.</creatorcontrib><creatorcontrib>McLennan, Peter L.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peoples, Gregory E.</au><au>McLennan, Peter L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2010-12-28</date><risdate>2010</risdate><volume>104</volume><issue>12</issue><spage>1771</spage><epage>1779</epage><pages>1771-1779</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><coden>BJNUAV</coden><abstract>Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P &lt; 0·05) in red and white skeletal muscle membranes. There was no difference in initial twitch tension but the n-3 PUFA group maintained greater twitch tension within all contraction bouts and recovered better during rest to produce greater twitch tension throughout the final contraction bout (P &lt; 0·05). Hindlimb oxygen consumption during contraction was significantly lower in the n-3 PUFA group compared with the SF group, producing a significantly higher O2 efficiency index compared with both SF and n-6 PUFA groups (P &lt; 0·05). Resting oxygen consumption was increased in recovery in the SF group (P &lt; 0·05) but did not change in the n-3 PUFA group. Membrane incorporation of n-3 PUFA DHA following fish oil feeding was associated with increased efficiency of muscle O2 consumption and promoted resistance to muscle fatigue.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>20691135</pmid><doi>10.1017/S0007114510002928</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1145
ispartof British journal of nutrition, 2010-12, Vol.104 (12), p.1771-1779
issn 0007-1145
1475-2662
language eng
recordid cdi_proquest_miscellaneous_815965143
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete
subjects animal models
Animals
Biological and medical sciences
Cell Membrane - chemistry
DHA
Diet
dietary fat
Fatigue
Fatty acids
Fatty Acids - analysis
Fatty Acids - metabolism
Feeding. Feeding behavior
Fish oil
Fish oils
Fish Oils - administration & dosage
Fish Oils - pharmacology
Fundamental and applied biological sciences. Psychology
Hindlimb - drug effects
Hindlimb - physiology
human nutrition
in vivo studies
legs
Linoleic Acid - pharmacology
Male
Membranes
Metabolism and Metabolic Studies
muscle contraction
Muscle Contraction - drug effects
Muscle fatigue
Muscle Fatigue - drug effects
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Musculoskeletal system
n-3 PUFA
Nutrition research
omega-3 fatty acids
omega-6 fatty acids
Oxygen
Oxygen consumption
Oxygen Consumption - drug effects
Oxygen Consumption - physiology
polyunsaturated fatty acids
Rats
Rats, Wistar
Rodents
saturated fatty acids
skeletal muscle
Tension
Vertebrates: anatomy and physiology, studies on body, several organs or systems
title Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20fish%20oil%20reduces%20skeletal%20muscle%20oxygen%20consumption,%20provides%20fatigue%20resistance%20and%20improves%20contractile%20recovery%20in%20the%20rat%20in%20vivo%20hindlimb&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Peoples,%20Gregory%20E.&rft.date=2010-12-28&rft.volume=104&rft.issue=12&rft.spage=1771&rft.epage=1779&rft.pages=1771-1779&rft.issn=0007-1145&rft.eissn=1475-2662&rft.coden=BJNUAV&rft_id=info:doi/10.1017/S0007114510002928&rft_dat=%3Cproquest_cross%3E2203737081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816192387&rft_id=info:pmid/20691135&rft_cupid=10_1017_S0007114510002928&rfr_iscdi=true