Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions
The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2010-12, Vol.77A (12), p.1160-1168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 12 |
container_start_page | 1160 |
container_title | Cytometry. Part A |
container_volume | 77A |
creator | Langhammer, Christopher G Previtera, Michelle L Sweet, Eric S Sran, Simranjeet S Chen, Maxine Firestein, Bonnie L |
description | The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course‐grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open‐source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain‐derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite‐specific Sholl data returned by Bonfire analysis. © 2010 International Society for Advancement of Cytometry |
doi_str_mv | 10.1002/cyto.a.20954 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815544695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017971314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4954-1a44a19cc94881c17da3c622973d8575a3b21470370f64c8806d18cdbb1c62f43</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi1EREKgowZ3ULDLvbbnx-miFZBIkVIkEaKyPB7PYjSzXnxnQMNb8MZ4s0kKhFLZ0nd8fO2PsVcISwQQH9w8xqVdCtCFesKOsCjEQmkJTx_2Qhyy50TfAWQBUjxjhwLKuhIAR-zP6TTGwY6-5VffYt9zu7H9TIF47Hgb1mEMv3O28VOKOeFDTNvMxfXM7ciHqR_DtvecnO09nfAvOfPc-Sz6R_fTJ5roP5fY1MTEaWqSX4e4oRfsoLM9-Zd36zG7-fTxenW2uLj8fL46vVg4lV-6QKuURe2cVnWNDqvWSlcKoSvZ1kVVWNkIVBXICrpSubqGssXatU2DGeuUPGZv995tij8mT6MZAu0mtxsfJzJ1_j2lSl1k8t2jJAJWukKJO-n7PepSJEq-M9sUBpvmDJldXWZXl7Hmtq6Mv74zT83g2wf4vp8MyD3wK_R-flRmVl-vL--1b_anOpvjdQpkbq4EoATUWGhVyr-WZ6y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017971314</pqid></control><display><type>article</type><title>Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Langhammer, Christopher G ; Previtera, Michelle L ; Sweet, Eric S ; Sran, Simranjeet S ; Chen, Maxine ; Firestein, Bonnie L</creator><creatorcontrib>Langhammer, Christopher G ; Previtera, Michelle L ; Sweet, Eric S ; Sran, Simranjeet S ; Chen, Maxine ; Firestein, Bonnie L</creatorcontrib><description>The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course‐grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open‐source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain‐derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite‐specific Sholl data returned by Bonfire analysis. © 2010 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>ISSN: 1552-4930</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.20954</identifier><identifier>PMID: 20687200</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; BDNF ; Brain-Derived Neurotrophic Factor - pharmacology ; Cells, Cultured ; computer‐assisted ; digitization ; Hippocampus - cytology ; Hippocampus - drug effects ; Image Processing, Computer-Assisted - methods ; morphology ; neurite ; Neurites - drug effects ; Neurites - ultrastructure ; Neurons - drug effects ; Neurons - ultrastructure ; Pattern Recognition, Automated - methods ; Rats ; Sholl analysis ; tracing</subject><ispartof>Cytometry. Part A, 2010-12, Vol.77A (12), p.1160-1168</ispartof><rights>Copyright © 2010 International Society for Advancement of Cytometry</rights><rights>2010 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4954-1a44a19cc94881c17da3c622973d8575a3b21470370f64c8806d18cdbb1c62f43</citedby><cites>FETCH-LOGICAL-c4954-1a44a19cc94881c17da3c622973d8575a3b21470370f64c8806d18cdbb1c62f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.20954$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.20954$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20687200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langhammer, Christopher G</creatorcontrib><creatorcontrib>Previtera, Michelle L</creatorcontrib><creatorcontrib>Sweet, Eric S</creatorcontrib><creatorcontrib>Sran, Simranjeet S</creatorcontrib><creatorcontrib>Chen, Maxine</creatorcontrib><creatorcontrib>Firestein, Bonnie L</creatorcontrib><title>Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course‐grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open‐source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain‐derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite‐specific Sholl data returned by Bonfire analysis. © 2010 International Society for Advancement of Cytometry</description><subject>Animals</subject><subject>BDNF</subject><subject>Brain-Derived Neurotrophic Factor - pharmacology</subject><subject>Cells, Cultured</subject><subject>computer‐assisted</subject><subject>digitization</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>morphology</subject><subject>neurite</subject><subject>Neurites - drug effects</subject><subject>Neurites - ultrastructure</subject><subject>Neurons - drug effects</subject><subject>Neurons - ultrastructure</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Rats</subject><subject>Sholl analysis</subject><subject>tracing</subject><issn>1552-4922</issn><issn>1552-4930</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kb1uFDEURi1EREKgowZ3ULDLvbbnx-miFZBIkVIkEaKyPB7PYjSzXnxnQMNb8MZ4s0kKhFLZ0nd8fO2PsVcISwQQH9w8xqVdCtCFesKOsCjEQmkJTx_2Qhyy50TfAWQBUjxjhwLKuhIAR-zP6TTGwY6-5VffYt9zu7H9TIF47Hgb1mEMv3O28VOKOeFDTNvMxfXM7ciHqR_DtvecnO09nfAvOfPc-Sz6R_fTJ5roP5fY1MTEaWqSX4e4oRfsoLM9-Zd36zG7-fTxenW2uLj8fL46vVg4lV-6QKuURe2cVnWNDqvWSlcKoSvZ1kVVWNkIVBXICrpSubqGssXatU2DGeuUPGZv995tij8mT6MZAu0mtxsfJzJ1_j2lSl1k8t2jJAJWukKJO-n7PepSJEq-M9sUBpvmDJldXWZXl7Hmtq6Mv74zT83g2wf4vp8MyD3wK_R-flRmVl-vL--1b_anOpvjdQpkbq4EoATUWGhVyr-WZ6y-</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Langhammer, Christopher G</creator><creator>Previtera, Michelle L</creator><creator>Sweet, Eric S</creator><creator>Sran, Simranjeet S</creator><creator>Chen, Maxine</creator><creator>Firestein, Bonnie L</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201012</creationdate><title>Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions</title><author>Langhammer, Christopher G ; Previtera, Michelle L ; Sweet, Eric S ; Sran, Simranjeet S ; Chen, Maxine ; Firestein, Bonnie L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4954-1a44a19cc94881c17da3c622973d8575a3b21470370f64c8806d18cdbb1c62f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>BDNF</topic><topic>Brain-Derived Neurotrophic Factor - pharmacology</topic><topic>Cells, Cultured</topic><topic>computer‐assisted</topic><topic>digitization</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>morphology</topic><topic>neurite</topic><topic>Neurites - drug effects</topic><topic>Neurites - ultrastructure</topic><topic>Neurons - drug effects</topic><topic>Neurons - ultrastructure</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Rats</topic><topic>Sholl analysis</topic><topic>tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langhammer, Christopher G</creatorcontrib><creatorcontrib>Previtera, Michelle L</creatorcontrib><creatorcontrib>Sweet, Eric S</creatorcontrib><creatorcontrib>Sran, Simranjeet S</creatorcontrib><creatorcontrib>Chen, Maxine</creatorcontrib><creatorcontrib>Firestein, Bonnie L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langhammer, Christopher G</au><au>Previtera, Michelle L</au><au>Sweet, Eric S</au><au>Sran, Simranjeet S</au><au>Chen, Maxine</au><au>Firestein, Bonnie L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2010-12</date><risdate>2010</risdate><volume>77A</volume><issue>12</issue><spage>1160</spage><epage>1168</epage><pages>1160-1168</pages><issn>1552-4922</issn><issn>1552-4930</issn><eissn>1552-4930</eissn><abstract>The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course‐grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open‐source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain‐derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite‐specific Sholl data returned by Bonfire analysis. © 2010 International Society for Advancement of Cytometry</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20687200</pmid><doi>10.1002/cyto.a.20954</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2010-12, Vol.77A (12), p.1160-1168 |
issn | 1552-4922 1552-4930 1552-4930 |
language | eng |
recordid | cdi_proquest_miscellaneous_815544695 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals BDNF Brain-Derived Neurotrophic Factor - pharmacology Cells, Cultured computer‐assisted digitization Hippocampus - cytology Hippocampus - drug effects Image Processing, Computer-Assisted - methods morphology neurite Neurites - drug effects Neurites - ultrastructure Neurons - drug effects Neurons - ultrastructure Pattern Recognition, Automated - methods Rats Sholl analysis tracing |
title | Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Sholl%20analysis%20of%20digitized%20neuronal%20morphology%20at%20multiple%20scales:%20Whole%20cell%20Sholl%20analysis%20versus%20Sholl%20analysis%20of%20arbor%20subregions&rft.jtitle=Cytometry.%20Part%20A&rft.au=Langhammer,%20Christopher%20G&rft.date=2010-12&rft.volume=77A&rft.issue=12&rft.spage=1160&rft.epage=1168&rft.pages=1160-1168&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.20954&rft_dat=%3Cproquest_cross%3E1017971314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017971314&rft_id=info:pmid/20687200&rfr_iscdi=true |