Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis

Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2010-10, Vol.64 (1), p.114-127
Hauptverfasser: Han, Ling, Li, Guo-Jing, Yang, Kwang-Yeol, Mao, Guohong, Wang, Ruigang, Liu, Yidong, Zhang, Shuqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 114
container_title The Plant journal : for cell and molecular biology
container_volume 64
creator Han, Ling
Li, Guo-Jing
Yang, Kwang-Yeol
Mao, Guohong
Wang, Ruigang
Liu, Yidong
Zhang, Shuqun
description Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).
doi_str_mv 10.1111/j.1365-313X.2010.04318.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_815541862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815541862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</originalsourceid><addsrcrecordid>eNqFkktv1DAQxy0EokvhK4CFhDhl8SN-5MChVDxVBBKtxM2aOLOLl6yztRPofnscdikSF3wZa-Y3fz_mTwjlbMnLerFZcqlVJbn8uhSsZFktuV3e3CGL28JdsmCNZpWpuTghD3LeMMaN1PV9ciKYVo2wbEG2H8M4rDFW4MfwA0bs6C4NI4ZIv4cIGamkEDuqacL11BeAvhrGtB9Dpj5ETAhViN3kSyOO3_Y9RpwVSmYMQ6RF5yxBG7phl0N-SO6toM_46BhPydWb15fn76qLT2_fn59dVF4zaSstoURmmLIdCoC2sYhM1LUyXHW8MZrXSmivbAvC6q4FEKA6idxr5RXIU_L8oFtucj1hHt02ZI99DxGHKTvLlaq51eK_pNGiNtwwXcin_5CbYUqxPMOZWU1JqQr0-AhN7RY7t0thC2nv_nx4AZ4dAcge-lWC6EP-y0lhipos3MsD9zP0uL-tc-ZmA7iNm-fs5jm72QDutwHcjbv8_GHelf4nh_4VDA7WqZxx9aWQknHb1Exz-QvYb6vR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755415335</pqid></control><display><type>article</type><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</creator><creatorcontrib>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</creatorcontrib><description>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2010.04318.x</identifier><identifier>PMID: 20659280</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>1-aminocyclopropane-1-carboxylate synthase ; ACC synthase ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Botrytis ; Botrytis - pathogenicity ; Botrytis cinerea ; Ethylene ; ethylene biosynthesis ; Ethylenes - biosynthesis ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; Fungi ; Gene Expression Regulation, Plant ; Homology ; Infection ; Isoenzymes ; Lyases - metabolism ; MAP kinase ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Mutation ; Pathogens ; Phosphorylation ; plant defense response ; Plant physiology and development ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - microbiology ; proteasomes ; Proteins ; RNA, Plant - genetics ; Seedlings ; Signal transduction ; Stress analysis ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2010-10, Vol.64 (1), p.114-127</ispartof><rights>2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.</rights><rights>Journal compilation © 2010 Blackwell Publishing Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2010.04318.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2010.04318.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23277553$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20659280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ling</creatorcontrib><creatorcontrib>Li, Guo-Jing</creatorcontrib><creatorcontrib>Yang, Kwang-Yeol</creatorcontrib><creatorcontrib>Mao, Guohong</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><creatorcontrib>Liu, Yidong</creatorcontrib><creatorcontrib>Zhang, Shuqun</creatorcontrib><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</description><subject>1-aminocyclopropane-1-carboxylate synthase</subject><subject>ACC synthase</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Botrytis</subject><subject>Botrytis - pathogenicity</subject><subject>Botrytis cinerea</subject><subject>Ethylene</subject><subject>ethylene biosynthesis</subject><subject>Ethylenes - biosynthesis</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Plant</subject><subject>Homology</subject><subject>Infection</subject><subject>Isoenzymes</subject><subject>Lyases - metabolism</subject><subject>MAP kinase</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phosphorylation</subject><subject>plant defense response</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>proteasomes</subject><subject>Proteins</subject><subject>RNA, Plant - genetics</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>Stress analysis</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAQxy0EokvhK4CFhDhl8SN-5MChVDxVBBKtxM2aOLOLl6yztRPofnscdikSF3wZa-Y3fz_mTwjlbMnLerFZcqlVJbn8uhSsZFktuV3e3CGL28JdsmCNZpWpuTghD3LeMMaN1PV9ciKYVo2wbEG2H8M4rDFW4MfwA0bs6C4NI4ZIv4cIGamkEDuqacL11BeAvhrGtB9Dpj5ETAhViN3kSyOO3_Y9RpwVSmYMQ6RF5yxBG7phl0N-SO6toM_46BhPydWb15fn76qLT2_fn59dVF4zaSstoURmmLIdCoC2sYhM1LUyXHW8MZrXSmivbAvC6q4FEKA6idxr5RXIU_L8oFtucj1hHt02ZI99DxGHKTvLlaq51eK_pNGiNtwwXcin_5CbYUqxPMOZWU1JqQr0-AhN7RY7t0thC2nv_nx4AZ4dAcge-lWC6EP-y0lhipos3MsD9zP0uL-tc-ZmA7iNm-fs5jm72QDutwHcjbv8_GHelf4nh_4VDA7WqZxx9aWQknHb1Exz-QvYb6vR</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Han, Ling</creator><creator>Li, Guo-Jing</creator><creator>Yang, Kwang-Yeol</creator><creator>Mao, Guohong</creator><creator>Wang, Ruigang</creator><creator>Liu, Yidong</creator><creator>Zhang, Shuqun</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><author>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1-aminocyclopropane-1-carboxylate synthase</topic><topic>ACC synthase</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Botrytis</topic><topic>Botrytis - pathogenicity</topic><topic>Botrytis cinerea</topic><topic>Ethylene</topic><topic>ethylene biosynthesis</topic><topic>Ethylenes - biosynthesis</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Plant</topic><topic>Homology</topic><topic>Infection</topic><topic>Isoenzymes</topic><topic>Lyases - metabolism</topic><topic>MAP kinase</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phosphorylation</topic><topic>plant defense response</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>proteasomes</topic><topic>Proteins</topic><topic>RNA, Plant - genetics</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>Stress analysis</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ling</creatorcontrib><creatorcontrib>Li, Guo-Jing</creatorcontrib><creatorcontrib>Yang, Kwang-Yeol</creatorcontrib><creatorcontrib>Mao, Guohong</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><creatorcontrib>Liu, Yidong</creatorcontrib><creatorcontrib>Zhang, Shuqun</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ling</au><au>Li, Guo-Jing</au><au>Yang, Kwang-Yeol</au><au>Mao, Guohong</au><au>Wang, Ruigang</au><au>Liu, Yidong</au><au>Zhang, Shuqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2010-10</date><risdate>2010</risdate><volume>64</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20659280</pmid><doi>10.1111/j.1365-313X.2010.04318.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2010-10, Vol.64 (1), p.114-127
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_815541862
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects 1-aminocyclopropane-1-carboxylate synthase
ACC synthase
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
Botrytis
Botrytis - pathogenicity
Botrytis cinerea
Ethylene
ethylene biosynthesis
Ethylenes - biosynthesis
Flowers & plants
Fundamental and applied biological sciences. Psychology
Fungi
Gene Expression Regulation, Plant
Homology
Infection
Isoenzymes
Lyases - metabolism
MAP kinase
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - metabolism
Mitogen-Activated Protein Kinases - genetics
Mitogen-Activated Protein Kinases - metabolism
Mutation
Pathogens
Phosphorylation
plant defense response
Plant physiology and development
Plants, Genetically Modified - enzymology
Plants, Genetically Modified - genetics
Plants, Genetically Modified - microbiology
proteasomes
Proteins
RNA, Plant - genetics
Seedlings
Signal transduction
Stress analysis
Transgenic plants
title Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitogen-activated%20protein%20kinase%203%20and%206%20regulate%20Botrytis%20cinerea-induced%20ethylene%20production%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Han,%20Ling&rft.date=2010-10&rft.volume=64&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2010.04318.x&rft_dat=%3Cproquest_pubme%3E815541862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755415335&rft_id=info:pmid/20659280&rfr_iscdi=true