Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis
Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated prot...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2010-10, Vol.64 (1), p.114-127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 64 |
creator | Han, Ling Li, Guo-Jing Yang, Kwang-Yeol Mao, Guohong Wang, Ruigang Liu, Yidong Zhang, Shuqun |
description | Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s). |
doi_str_mv | 10.1111/j.1365-313X.2010.04318.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_815541862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815541862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</originalsourceid><addsrcrecordid>eNqFkktv1DAQxy0EokvhK4CFhDhl8SN-5MChVDxVBBKtxM2aOLOLl6yztRPofnscdikSF3wZa-Y3fz_mTwjlbMnLerFZcqlVJbn8uhSsZFktuV3e3CGL28JdsmCNZpWpuTghD3LeMMaN1PV9ciKYVo2wbEG2H8M4rDFW4MfwA0bs6C4NI4ZIv4cIGamkEDuqacL11BeAvhrGtB9Dpj5ETAhViN3kSyOO3_Y9RpwVSmYMQ6RF5yxBG7phl0N-SO6toM_46BhPydWb15fn76qLT2_fn59dVF4zaSstoURmmLIdCoC2sYhM1LUyXHW8MZrXSmivbAvC6q4FEKA6idxr5RXIU_L8oFtucj1hHt02ZI99DxGHKTvLlaq51eK_pNGiNtwwXcin_5CbYUqxPMOZWU1JqQr0-AhN7RY7t0thC2nv_nx4AZ4dAcge-lWC6EP-y0lhipos3MsD9zP0uL-tc-ZmA7iNm-fs5jm72QDutwHcjbv8_GHelf4nh_4VDA7WqZxx9aWQknHb1Exz-QvYb6vR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755415335</pqid></control><display><type>article</type><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</creator><creatorcontrib>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</creatorcontrib><description>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2010.04318.x</identifier><identifier>PMID: 20659280</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>1-aminocyclopropane-1-carboxylate synthase ; ACC synthase ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Botrytis ; Botrytis - pathogenicity ; Botrytis cinerea ; Ethylene ; ethylene biosynthesis ; Ethylenes - biosynthesis ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Fungi ; Gene Expression Regulation, Plant ; Homology ; Infection ; Isoenzymes ; Lyases - metabolism ; MAP kinase ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Mutation ; Pathogens ; Phosphorylation ; plant defense response ; Plant physiology and development ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - microbiology ; proteasomes ; Proteins ; RNA, Plant - genetics ; Seedlings ; Signal transduction ; Stress analysis ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2010-10, Vol.64 (1), p.114-127</ispartof><rights>2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.</rights><rights>Journal compilation © 2010 Blackwell Publishing Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2010.04318.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2010.04318.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23277553$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20659280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ling</creatorcontrib><creatorcontrib>Li, Guo-Jing</creatorcontrib><creatorcontrib>Yang, Kwang-Yeol</creatorcontrib><creatorcontrib>Mao, Guohong</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><creatorcontrib>Liu, Yidong</creatorcontrib><creatorcontrib>Zhang, Shuqun</creatorcontrib><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</description><subject>1-aminocyclopropane-1-carboxylate synthase</subject><subject>ACC synthase</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Botrytis</subject><subject>Botrytis - pathogenicity</subject><subject>Botrytis cinerea</subject><subject>Ethylene</subject><subject>ethylene biosynthesis</subject><subject>Ethylenes - biosynthesis</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Plant</subject><subject>Homology</subject><subject>Infection</subject><subject>Isoenzymes</subject><subject>Lyases - metabolism</subject><subject>MAP kinase</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phosphorylation</subject><subject>plant defense response</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>proteasomes</subject><subject>Proteins</subject><subject>RNA, Plant - genetics</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>Stress analysis</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAQxy0EokvhK4CFhDhl8SN-5MChVDxVBBKtxM2aOLOLl6yztRPofnscdikSF3wZa-Y3fz_mTwjlbMnLerFZcqlVJbn8uhSsZFktuV3e3CGL28JdsmCNZpWpuTghD3LeMMaN1PV9ciKYVo2wbEG2H8M4rDFW4MfwA0bs6C4NI4ZIv4cIGamkEDuqacL11BeAvhrGtB9Dpj5ETAhViN3kSyOO3_Y9RpwVSmYMQ6RF5yxBG7phl0N-SO6toM_46BhPydWb15fn76qLT2_fn59dVF4zaSstoURmmLIdCoC2sYhM1LUyXHW8MZrXSmivbAvC6q4FEKA6idxr5RXIU_L8oFtucj1hHt02ZI99DxGHKTvLlaq51eK_pNGiNtwwXcin_5CbYUqxPMOZWU1JqQr0-AhN7RY7t0thC2nv_nx4AZ4dAcge-lWC6EP-y0lhipos3MsD9zP0uL-tc-ZmA7iNm-fs5jm72QDutwHcjbv8_GHelf4nh_4VDA7WqZxx9aWQknHb1Exz-QvYb6vR</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Han, Ling</creator><creator>Li, Guo-Jing</creator><creator>Yang, Kwang-Yeol</creator><creator>Mao, Guohong</creator><creator>Wang, Ruigang</creator><creator>Liu, Yidong</creator><creator>Zhang, Shuqun</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</title><author>Han, Ling ; Li, Guo-Jing ; Yang, Kwang-Yeol ; Mao, Guohong ; Wang, Ruigang ; Liu, Yidong ; Zhang, Shuqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6038-63a60307058de2aab98ee02445715d197614526c58ba286dbaa2a5d3e1c65c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1-aminocyclopropane-1-carboxylate synthase</topic><topic>ACC synthase</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Botrytis</topic><topic>Botrytis - pathogenicity</topic><topic>Botrytis cinerea</topic><topic>Ethylene</topic><topic>ethylene biosynthesis</topic><topic>Ethylenes - biosynthesis</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Plant</topic><topic>Homology</topic><topic>Infection</topic><topic>Isoenzymes</topic><topic>Lyases - metabolism</topic><topic>MAP kinase</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phosphorylation</topic><topic>plant defense response</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>proteasomes</topic><topic>Proteins</topic><topic>RNA, Plant - genetics</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>Stress analysis</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ling</creatorcontrib><creatorcontrib>Li, Guo-Jing</creatorcontrib><creatorcontrib>Yang, Kwang-Yeol</creatorcontrib><creatorcontrib>Mao, Guohong</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><creatorcontrib>Liu, Yidong</creatorcontrib><creatorcontrib>Zhang, Shuqun</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ling</au><au>Li, Guo-Jing</au><au>Yang, Kwang-Yeol</au><au>Mao, Guohong</au><au>Wang, Ruigang</au><au>Liu, Yidong</au><au>Zhang, Shuqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2010-10</date><risdate>2010</risdate><volume>64</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1-amino-cyclopropane-1-carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain-of-function GVG-NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid-cultured seedling system, we found that B. cinerea-induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen-induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea-induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK-independent pathway(s).</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20659280</pmid><doi>10.1111/j.1365-313X.2010.04318.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2010-10, Vol.64 (1), p.114-127 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_815541862 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals |
subjects | 1-aminocyclopropane-1-carboxylate synthase ACC synthase Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological and medical sciences Botrytis Botrytis - pathogenicity Botrytis cinerea Ethylene ethylene biosynthesis Ethylenes - biosynthesis Flowers & plants Fundamental and applied biological sciences. Psychology Fungi Gene Expression Regulation, Plant Homology Infection Isoenzymes Lyases - metabolism MAP kinase mitogen-activated protein kinase Mitogen-Activated Protein Kinase Kinases - genetics Mitogen-Activated Protein Kinase Kinases - metabolism Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - metabolism Mutation Pathogens Phosphorylation plant defense response Plant physiology and development Plants, Genetically Modified - enzymology Plants, Genetically Modified - genetics Plants, Genetically Modified - microbiology proteasomes Proteins RNA, Plant - genetics Seedlings Signal transduction Stress analysis Transgenic plants |
title | Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitogen-activated%20protein%20kinase%203%20and%206%20regulate%20Botrytis%20cinerea-induced%20ethylene%20production%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Han,%20Ling&rft.date=2010-10&rft.volume=64&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2010.04318.x&rft_dat=%3Cproquest_pubme%3E815541862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755415335&rft_id=info:pmid/20659280&rfr_iscdi=true |