Orientation-based continuum damage models for rocks
A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense that it adopts a continuum description but subsu...
Gespeichert in:
Veröffentlicht in: | Pure and Applied Geophysics 2006-12, Vol.163 (11-12), p.2529-2543 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2543 |
---|---|
container_issue | 11-12 |
container_start_page | 2529 |
container_title | Pure and Applied Geophysics |
container_volume | 163 |
creator | Liu, Xiaoyu Yin, Xiangchu Liang, Naigang |
description | A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense that it adopts a continuum description but subsumes the statistical ensemble average of the action of the entirety of microscopic degrees of freedom. The choice of the relevant damage variables results therefore directly from the breaking of contact cohesive bonds, and it naturally obeys the Clausius-Duhem inequality. Furthermore, motivated by the fact that the free energy is formulated by the integral of potentials independently defined on different orientations over the upper hemisphere, the damage evolution equation is formulated on a generic orientation. Consequently, the mechanical behavior of a rock material generally becomes anisotropic characteristics in the inelastic regime even if the material is initially isotropic, thus introducing dissipation-induced anisotropy in a very natural and simple way. Finally, the development of the lattice solid model can be cast into the framework of the orientation based continuum constitutive model.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00024-006-0136-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815538814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815538814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ffcde30478ad5715cdd16f4007a704e096426b85e0ed3b9ebfed5177f6d5abf83</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoOI4-gLsiiKvoSXPtUgZvMDAbXYc0F-nYNmPSLnx7M8yA4Opw4PsP__kQuiZwTwDkQwaAmmEAgYFQgZsTtCCsBtyU7RQtACjFjHN6ji5y3gIQKXmzQHSTOj9OZuriiFuTvatsHKdunOehcmYwn74aovN9rkJMVYr2K1-is2D67K-Oc4k-np_eV694vXl5Wz2usa2VmHAI1nkKTCrjuCTcOkdEYKWtkcA8NILVolXcg3e0bXwbvOOlVhCOmzYoukR3h7u7FL9nnyc9dNn6vjejj3PWipR_lCKskDf_yG2c01jKaclVQ5WUdYHIAbIp5px80LvUDSb9aAJ6L1EfJOoiUe8l6qZkbo-HTbamD8mMtst_QcUF5ZzQX1ROcOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758938772</pqid></control><display><type>article</type><title>Orientation-based continuum damage models for rocks</title><source>SpringerLink Journals</source><creator>Liu, Xiaoyu ; Yin, Xiangchu ; Liang, Naigang</creator><creatorcontrib>Liu, Xiaoyu ; Yin, Xiangchu ; Liang, Naigang</creatorcontrib><description>A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense that it adopts a continuum description but subsumes the statistical ensemble average of the action of the entirety of microscopic degrees of freedom. The choice of the relevant damage variables results therefore directly from the breaking of contact cohesive bonds, and it naturally obeys the Clausius-Duhem inequality. Furthermore, motivated by the fact that the free energy is formulated by the integral of potentials independently defined on different orientations over the upper hemisphere, the damage evolution equation is formulated on a generic orientation. Consequently, the mechanical behavior of a rock material generally becomes anisotropic characteristics in the inelastic regime even if the material is initially isotropic, thus introducing dissipation-induced anisotropy in a very natural and simple way. Finally, the development of the lattice solid model can be cast into the framework of the orientation based continuum constitutive model.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-006-0136-9</identifier><identifier>CODEN: PAGYAV</identifier><language>eng</language><publisher>Basel: Springer</publisher><subject>Anisotropy ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Geophysics ; Rocks ; Thermodynamics</subject><ispartof>Pure and Applied Geophysics, 2006-12, Vol.163 (11-12), p.2529-2543</ispartof><rights>2007 INIST-CNRS</rights><rights>Birkhäuser Verlag, Basel, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18563551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Yin, Xiangchu</creatorcontrib><creatorcontrib>Liang, Naigang</creatorcontrib><title>Orientation-based continuum damage models for rocks</title><title>Pure and Applied Geophysics</title><description>A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense that it adopts a continuum description but subsumes the statistical ensemble average of the action of the entirety of microscopic degrees of freedom. The choice of the relevant damage variables results therefore directly from the breaking of contact cohesive bonds, and it naturally obeys the Clausius-Duhem inequality. Furthermore, motivated by the fact that the free energy is formulated by the integral of potentials independently defined on different orientations over the upper hemisphere, the damage evolution equation is formulated on a generic orientation. Consequently, the mechanical behavior of a rock material generally becomes anisotropic characteristics in the inelastic regime even if the material is initially isotropic, thus introducing dissipation-induced anisotropy in a very natural and simple way. Finally, the development of the lattice solid model can be cast into the framework of the orientation based continuum constitutive model.[PUBLICATION ABSTRACT]</description><subject>Anisotropy</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Rocks</subject><subject>Thermodynamics</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkMtKxDAUhoMoOI4-gLsiiKvoSXPtUgZvMDAbXYc0F-nYNmPSLnx7M8yA4Opw4PsP__kQuiZwTwDkQwaAmmEAgYFQgZsTtCCsBtyU7RQtACjFjHN6ji5y3gIQKXmzQHSTOj9OZuriiFuTvatsHKdunOehcmYwn74aovN9rkJMVYr2K1-is2D67K-Oc4k-np_eV694vXl5Wz2usa2VmHAI1nkKTCrjuCTcOkdEYKWtkcA8NILVolXcg3e0bXwbvOOlVhCOmzYoukR3h7u7FL9nnyc9dNn6vjejj3PWipR_lCKskDf_yG2c01jKaclVQ5WUdYHIAbIp5px80LvUDSb9aAJ6L1EfJOoiUe8l6qZkbo-HTbamD8mMtst_QcUF5ZzQX1ROcOI</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Liu, Xiaoyu</creator><creator>Yin, Xiangchu</creator><creator>Liang, Naigang</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Orientation-based continuum damage models for rocks</title><author>Liu, Xiaoyu ; Yin, Xiangchu ; Liang, Naigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ffcde30478ad5715cdd16f4007a704e096426b85e0ed3b9ebfed5177f6d5abf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Rocks</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Yin, Xiangchu</creatorcontrib><creatorcontrib>Liang, Naigang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and Applied Geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoyu</au><au>Yin, Xiangchu</au><au>Liang, Naigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orientation-based continuum damage models for rocks</atitle><jtitle>Pure and Applied Geophysics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>163</volume><issue>11-12</issue><spage>2529</spage><epage>2543</epage><pages>2529-2543</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><coden>PAGYAV</coden><abstract>A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense that it adopts a continuum description but subsumes the statistical ensemble average of the action of the entirety of microscopic degrees of freedom. The choice of the relevant damage variables results therefore directly from the breaking of contact cohesive bonds, and it naturally obeys the Clausius-Duhem inequality. Furthermore, motivated by the fact that the free energy is formulated by the integral of potentials independently defined on different orientations over the upper hemisphere, the damage evolution equation is formulated on a generic orientation. Consequently, the mechanical behavior of a rock material generally becomes anisotropic characteristics in the inelastic regime even if the material is initially isotropic, thus introducing dissipation-induced anisotropy in a very natural and simple way. Finally, the development of the lattice solid model can be cast into the framework of the orientation based continuum constitutive model.[PUBLICATION ABSTRACT]</abstract><cop>Basel</cop><pub>Springer</pub><doi>10.1007/s00024-006-0136-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and Applied Geophysics, 2006-12, Vol.163 (11-12), p.2529-2543 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_miscellaneous_815538814 |
source | SpringerLink Journals |
subjects | Anisotropy Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Geophysics Rocks Thermodynamics |
title | Orientation-based continuum damage models for rocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orientation-based%20continuum%20damage%20models%20for%20rocks&rft.jtitle=Pure%20and%20Applied%20Geophysics&rft.au=Liu,%20Xiaoyu&rft.date=2006-12-01&rft.volume=163&rft.issue=11-12&rft.spage=2529&rft.epage=2543&rft.pages=2529-2543&rft.issn=0033-4553&rft.eissn=1420-9136&rft.coden=PAGYAV&rft_id=info:doi/10.1007/s00024-006-0136-9&rft_dat=%3Cproquest_cross%3E815538814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758938772&rft_id=info:pmid/&rfr_iscdi=true |