Crystal structure of human gamma-butyrobetaine hydroxylase

► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2010-08, Vol.398 (4), p.634-639
Hauptverfasser: Tars, Kaspars, Rumnieks, Janis, Zeltins, Andris, Kazaks, Andris, Kotelovica, Svetlana, Leonciks, Ainars, Sharipo, Jelena, Viksna, Arturs, Kuka, Janis, Liepinsh, Edgars, Dambrova, Maija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 4
container_start_page 634
container_title Biochemical and biophysical research communications
container_volume 398
creator Tars, Kaspars
Rumnieks, Janis
Zeltins, Andris
Kazaks, Andris
Kotelovica, Svetlana
Leonciks, Ainars
Sharipo, Jelena
Viksna, Arturs
Kuka, Janis
Liepinsh, Edgars
Dambrova, Maija
description ► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB. To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0 Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes. The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered. The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X n –His triad, which is found in all related enzymes.
doi_str_mv 10.1016/j.bbrc.2010.06.121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815533255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X10012611</els_id><sourcerecordid>815533255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6B1xId65ak7RJG3Ejgy8YcKPgLuRx43ToQ5NU7L-3w4wu3dwLl3MO93wInROcEUz41SbT2puM4umAeUYoOUBzggVOKcHFIZpjjHlKBXmboZMQNhgTUnBxjGYUMyFKls_R9dKPIaomCdEPJg4ekt4l66FVXfKu2laleoij7zVEVXeQrEfr---xUQFO0ZFTTYCz_V6g1_u7l-Vjunp-eFrerlJTsDymUFqiDFMlE7ZiZc6c4OAMgYJVhQZtKzU9IxynhVPUWlxRzQtNhFNOMUXzBbrc5X74_nOAEGVbBwNNozrohyArwlie02ksEN0pje9D8ODkh69b5UdJsNwikxu5RSa3yCTmckI2mS728YNuwf5ZfhlNgpudAKaSXzV4GUwNnQFbezBR2r7-L_8H6m193w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815533255</pqid></control><display><type>article</type><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</creator><creatorcontrib>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</creatorcontrib><description>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB. To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0 Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes. The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered. The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X n –His triad, which is found in all related enzymes.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2010.06.121</identifier><identifier>PMID: 20599753</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2-Ketoglutarate ; Carnitine ; Catalytic Domain ; Crystal structure ; Crystallography ; Dioxygenase ; Drug Design ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; gamma-Butyrobetaine Dioxygenase - antagonists &amp; inhibitors ; gamma-Butyrobetaine Dioxygenase - chemistry ; gamma-Butyrobetaine Dioxygenase - genetics ; Gamma-buyrobetaine hydroxylase ; Humans ; Methylhydrazines - pharmacology ; Mildronate ; Protein Multimerization ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Zinc - chemistry</subject><ispartof>Biochemical and biophysical research communications, 2010-08, Vol.398 (4), p.634-639</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright (c) 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</citedby><cites>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2010.06.121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20599753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tars, Kaspars</creatorcontrib><creatorcontrib>Rumnieks, Janis</creatorcontrib><creatorcontrib>Zeltins, Andris</creatorcontrib><creatorcontrib>Kazaks, Andris</creatorcontrib><creatorcontrib>Kotelovica, Svetlana</creatorcontrib><creatorcontrib>Leonciks, Ainars</creatorcontrib><creatorcontrib>Sharipo, Jelena</creatorcontrib><creatorcontrib>Viksna, Arturs</creatorcontrib><creatorcontrib>Kuka, Janis</creatorcontrib><creatorcontrib>Liepinsh, Edgars</creatorcontrib><creatorcontrib>Dambrova, Maija</creatorcontrib><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB. To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0 Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes. The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered. The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X n –His triad, which is found in all related enzymes.</description><subject>2-Ketoglutarate</subject><subject>Carnitine</subject><subject>Catalytic Domain</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dioxygenase</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>gamma-Butyrobetaine Dioxygenase - antagonists &amp; inhibitors</subject><subject>gamma-Butyrobetaine Dioxygenase - chemistry</subject><subject>gamma-Butyrobetaine Dioxygenase - genetics</subject><subject>Gamma-buyrobetaine hydroxylase</subject><subject>Humans</subject><subject>Methylhydrazines - pharmacology</subject><subject>Mildronate</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Zinc - chemistry</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMozjj6B1xId65ak7RJG3Ejgy8YcKPgLuRx43ToQ5NU7L-3w4wu3dwLl3MO93wInROcEUz41SbT2puM4umAeUYoOUBzggVOKcHFIZpjjHlKBXmboZMQNhgTUnBxjGYUMyFKls_R9dKPIaomCdEPJg4ekt4l66FVXfKu2laleoij7zVEVXeQrEfr---xUQFO0ZFTTYCz_V6g1_u7l-Vjunp-eFrerlJTsDymUFqiDFMlE7ZiZc6c4OAMgYJVhQZtKzU9IxynhVPUWlxRzQtNhFNOMUXzBbrc5X74_nOAEGVbBwNNozrohyArwlie02ksEN0pje9D8ODkh69b5UdJsNwikxu5RSa3yCTmckI2mS728YNuwf5ZfhlNgpudAKaSXzV4GUwNnQFbezBR2r7-L_8H6m193w</recordid><startdate>20100806</startdate><enddate>20100806</enddate><creator>Tars, Kaspars</creator><creator>Rumnieks, Janis</creator><creator>Zeltins, Andris</creator><creator>Kazaks, Andris</creator><creator>Kotelovica, Svetlana</creator><creator>Leonciks, Ainars</creator><creator>Sharipo, Jelena</creator><creator>Viksna, Arturs</creator><creator>Kuka, Janis</creator><creator>Liepinsh, Edgars</creator><creator>Dambrova, Maija</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20100806</creationdate><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><author>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>2-Ketoglutarate</topic><topic>Carnitine</topic><topic>Catalytic Domain</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dioxygenase</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>gamma-Butyrobetaine Dioxygenase - antagonists &amp; inhibitors</topic><topic>gamma-Butyrobetaine Dioxygenase - chemistry</topic><topic>gamma-Butyrobetaine Dioxygenase - genetics</topic><topic>Gamma-buyrobetaine hydroxylase</topic><topic>Humans</topic><topic>Methylhydrazines - pharmacology</topic><topic>Mildronate</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tars, Kaspars</creatorcontrib><creatorcontrib>Rumnieks, Janis</creatorcontrib><creatorcontrib>Zeltins, Andris</creatorcontrib><creatorcontrib>Kazaks, Andris</creatorcontrib><creatorcontrib>Kotelovica, Svetlana</creatorcontrib><creatorcontrib>Leonciks, Ainars</creatorcontrib><creatorcontrib>Sharipo, Jelena</creatorcontrib><creatorcontrib>Viksna, Arturs</creatorcontrib><creatorcontrib>Kuka, Janis</creatorcontrib><creatorcontrib>Liepinsh, Edgars</creatorcontrib><creatorcontrib>Dambrova, Maija</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tars, Kaspars</au><au>Rumnieks, Janis</au><au>Zeltins, Andris</au><au>Kazaks, Andris</au><au>Kotelovica, Svetlana</au><au>Leonciks, Ainars</au><au>Sharipo, Jelena</au><au>Viksna, Arturs</au><au>Kuka, Janis</au><au>Liepinsh, Edgars</au><au>Dambrova, Maija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of human gamma-butyrobetaine hydroxylase</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2010-08-06</date><risdate>2010</risdate><volume>398</volume><issue>4</issue><spage>634</spage><epage>639</epage><pages>634-639</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB. To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0 Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes. The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered. The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X n –His triad, which is found in all related enzymes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20599753</pmid><doi>10.1016/j.bbrc.2010.06.121</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2010-08, Vol.398 (4), p.634-639
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_815533255
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 2-Ketoglutarate
Carnitine
Catalytic Domain
Crystal structure
Crystallography
Dioxygenase
Drug Design
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
gamma-Butyrobetaine Dioxygenase - antagonists & inhibitors
gamma-Butyrobetaine Dioxygenase - chemistry
gamma-Butyrobetaine Dioxygenase - genetics
Gamma-buyrobetaine hydroxylase
Humans
Methylhydrazines - pharmacology
Mildronate
Protein Multimerization
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Zinc - chemistry
title Crystal structure of human gamma-butyrobetaine hydroxylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20human%20gamma-butyrobetaine%20hydroxylase&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tars,%20Kaspars&rft.date=2010-08-06&rft.volume=398&rft.issue=4&rft.spage=634&rft.epage=639&rft.pages=634-639&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2010.06.121&rft_dat=%3Cproquest_cross%3E815533255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815533255&rft_id=info:pmid/20599753&rft_els_id=S0006291X10012611&rfr_iscdi=true