Crystal structure of human gamma-butyrobetaine hydroxylase
► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2 Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain. Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthes...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2010-08, Vol.398 (4), p.634-639 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 4 |
container_start_page | 634 |
container_title | Biochemical and biophysical research communications |
container_volume | 398 |
creator | Tars, Kaspars Rumnieks, Janis Zeltins, Andris Kazaks, Andris Kotelovica, Svetlana Leonciks, Ainars Sharipo, Jelena Viksna, Arturs Kuka, Janis Liepinsh, Edgars Dambrova, Maija |
description | ► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2
Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain.
Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of
l-carnitine by hydroxylation of gamma-butyrobetaine (GBB).
l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB.
To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0
Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes.
The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered.
The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X
n
–His triad, which is found in all related enzymes. |
doi_str_mv | 10.1016/j.bbrc.2010.06.121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815533255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X10012611</els_id><sourcerecordid>815533255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6B1xId65ak7RJG3Ejgy8YcKPgLuRx43ToQ5NU7L-3w4wu3dwLl3MO93wInROcEUz41SbT2puM4umAeUYoOUBzggVOKcHFIZpjjHlKBXmboZMQNhgTUnBxjGYUMyFKls_R9dKPIaomCdEPJg4ekt4l66FVXfKu2laleoij7zVEVXeQrEfr---xUQFO0ZFTTYCz_V6g1_u7l-Vjunp-eFrerlJTsDymUFqiDFMlE7ZiZc6c4OAMgYJVhQZtKzU9IxynhVPUWlxRzQtNhFNOMUXzBbrc5X74_nOAEGVbBwNNozrohyArwlie02ksEN0pje9D8ODkh69b5UdJsNwikxu5RSa3yCTmckI2mS728YNuwf5ZfhlNgpudAKaSXzV4GUwNnQFbezBR2r7-L_8H6m193w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815533255</pqid></control><display><type>article</type><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</creator><creatorcontrib>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</creatorcontrib><description>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2
Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain.
Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of
l-carnitine by hydroxylation of gamma-butyrobetaine (GBB).
l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB.
To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0
Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes.
The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered.
The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X
n
–His triad, which is found in all related enzymes.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2010.06.121</identifier><identifier>PMID: 20599753</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2-Ketoglutarate ; Carnitine ; Catalytic Domain ; Crystal structure ; Crystallography ; Dioxygenase ; Drug Design ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; gamma-Butyrobetaine Dioxygenase - antagonists & inhibitors ; gamma-Butyrobetaine Dioxygenase - chemistry ; gamma-Butyrobetaine Dioxygenase - genetics ; Gamma-buyrobetaine hydroxylase ; Humans ; Methylhydrazines - pharmacology ; Mildronate ; Protein Multimerization ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Zinc - chemistry</subject><ispartof>Biochemical and biophysical research communications, 2010-08, Vol.398 (4), p.634-639</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright (c) 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</citedby><cites>FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2010.06.121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20599753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tars, Kaspars</creatorcontrib><creatorcontrib>Rumnieks, Janis</creatorcontrib><creatorcontrib>Zeltins, Andris</creatorcontrib><creatorcontrib>Kazaks, Andris</creatorcontrib><creatorcontrib>Kotelovica, Svetlana</creatorcontrib><creatorcontrib>Leonciks, Ainars</creatorcontrib><creatorcontrib>Sharipo, Jelena</creatorcontrib><creatorcontrib>Viksna, Arturs</creatorcontrib><creatorcontrib>Kuka, Janis</creatorcontrib><creatorcontrib>Liepinsh, Edgars</creatorcontrib><creatorcontrib>Dambrova, Maija</creatorcontrib><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2
Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain.
Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of
l-carnitine by hydroxylation of gamma-butyrobetaine (GBB).
l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB.
To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0
Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes.
The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered.
The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X
n
–His triad, which is found in all related enzymes.</description><subject>2-Ketoglutarate</subject><subject>Carnitine</subject><subject>Catalytic Domain</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dioxygenase</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>gamma-Butyrobetaine Dioxygenase - antagonists & inhibitors</subject><subject>gamma-Butyrobetaine Dioxygenase - chemistry</subject><subject>gamma-Butyrobetaine Dioxygenase - genetics</subject><subject>Gamma-buyrobetaine hydroxylase</subject><subject>Humans</subject><subject>Methylhydrazines - pharmacology</subject><subject>Mildronate</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Zinc - chemistry</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMozjj6B1xId65ak7RJG3Ejgy8YcKPgLuRx43ToQ5NU7L-3w4wu3dwLl3MO93wInROcEUz41SbT2puM4umAeUYoOUBzggVOKcHFIZpjjHlKBXmboZMQNhgTUnBxjGYUMyFKls_R9dKPIaomCdEPJg4ekt4l66FVXfKu2laleoij7zVEVXeQrEfr---xUQFO0ZFTTYCz_V6g1_u7l-Vjunp-eFrerlJTsDymUFqiDFMlE7ZiZc6c4OAMgYJVhQZtKzU9IxynhVPUWlxRzQtNhFNOMUXzBbrc5X74_nOAEGVbBwNNozrohyArwlie02ksEN0pje9D8ODkh69b5UdJsNwikxu5RSa3yCTmckI2mS728YNuwf5ZfhlNgpudAKaSXzV4GUwNnQFbezBR2r7-L_8H6m193w</recordid><startdate>20100806</startdate><enddate>20100806</enddate><creator>Tars, Kaspars</creator><creator>Rumnieks, Janis</creator><creator>Zeltins, Andris</creator><creator>Kazaks, Andris</creator><creator>Kotelovica, Svetlana</creator><creator>Leonciks, Ainars</creator><creator>Sharipo, Jelena</creator><creator>Viksna, Arturs</creator><creator>Kuka, Janis</creator><creator>Liepinsh, Edgars</creator><creator>Dambrova, Maija</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20100806</creationdate><title>Crystal structure of human gamma-butyrobetaine hydroxylase</title><author>Tars, Kaspars ; Rumnieks, Janis ; Zeltins, Andris ; Kazaks, Andris ; Kotelovica, Svetlana ; Leonciks, Ainars ; Sharipo, Jelena ; Viksna, Arturs ; Kuka, Janis ; Liepinsh, Edgars ; Dambrova, Maija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e7d1ac5a759d85735f96efc1e4584bebd8a5999f624fa2dd082b64b19fafa5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>2-Ketoglutarate</topic><topic>Carnitine</topic><topic>Catalytic Domain</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dioxygenase</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>gamma-Butyrobetaine Dioxygenase - antagonists & inhibitors</topic><topic>gamma-Butyrobetaine Dioxygenase - chemistry</topic><topic>gamma-Butyrobetaine Dioxygenase - genetics</topic><topic>Gamma-buyrobetaine hydroxylase</topic><topic>Humans</topic><topic>Methylhydrazines - pharmacology</topic><topic>Mildronate</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tars, Kaspars</creatorcontrib><creatorcontrib>Rumnieks, Janis</creatorcontrib><creatorcontrib>Zeltins, Andris</creatorcontrib><creatorcontrib>Kazaks, Andris</creatorcontrib><creatorcontrib>Kotelovica, Svetlana</creatorcontrib><creatorcontrib>Leonciks, Ainars</creatorcontrib><creatorcontrib>Sharipo, Jelena</creatorcontrib><creatorcontrib>Viksna, Arturs</creatorcontrib><creatorcontrib>Kuka, Janis</creatorcontrib><creatorcontrib>Liepinsh, Edgars</creatorcontrib><creatorcontrib>Dambrova, Maija</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tars, Kaspars</au><au>Rumnieks, Janis</au><au>Zeltins, Andris</au><au>Kazaks, Andris</au><au>Kotelovica, Svetlana</au><au>Leonciks, Ainars</au><au>Sharipo, Jelena</au><au>Viksna, Arturs</au><au>Kuka, Janis</au><au>Liepinsh, Edgars</au><au>Dambrova, Maija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of human gamma-butyrobetaine hydroxylase</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2010-08-06</date><risdate>2010</risdate><volume>398</volume><issue>4</issue><spage>634</spage><epage>639</epage><pages>634-639</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>► Crystal structure of gamma-butyrobetaine hydroxylase solved at 2
Å resoluttion. ► Novel dimerization interface among 2-ketoglutarate oxygenases. ► Unique N-terminal Zn-containing domain.
Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of
l-carnitine by hydroxylation of gamma-butyrobetaine (GBB).
l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB.
To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0
Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes.
The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered.
The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His–X–Asp–X
n
–His triad, which is found in all related enzymes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20599753</pmid><doi>10.1016/j.bbrc.2010.06.121</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2010-08, Vol.398 (4), p.634-639 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_815533255 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 2-Ketoglutarate Carnitine Catalytic Domain Crystal structure Crystallography Dioxygenase Drug Design Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology gamma-Butyrobetaine Dioxygenase - antagonists & inhibitors gamma-Butyrobetaine Dioxygenase - chemistry gamma-Butyrobetaine Dioxygenase - genetics Gamma-buyrobetaine hydroxylase Humans Methylhydrazines - pharmacology Mildronate Protein Multimerization Recombinant Proteins - chemistry Recombinant Proteins - genetics Zinc - chemistry |
title | Crystal structure of human gamma-butyrobetaine hydroxylase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20human%20gamma-butyrobetaine%20hydroxylase&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tars,%20Kaspars&rft.date=2010-08-06&rft.volume=398&rft.issue=4&rft.spage=634&rft.epage=639&rft.pages=634-639&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2010.06.121&rft_dat=%3Cproquest_cross%3E815533255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815533255&rft_id=info:pmid/20599753&rft_els_id=S0006291X10012611&rfr_iscdi=true |