Short Time Scale Dynamics and a Second Correlation between Liquid and Gas Phase Chemical Rates: Diffusion Processes in Noble Gas Fluids

A theoretical formula for single-atom diffusion rates that predicts an isothermal correlation relation between the liquid (l) and gas (g) phase diffusion coefficients, D(T, ρl) and D(T, ρg) is developed. This formula is based on a molecular level expression for the atom’s diffusion coefficient, D(T,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2010-12, Vol.114 (47), p.15610-15615
Hauptverfasser: Cox, Pelin, Adelman, Steven A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical formula for single-atom diffusion rates that predicts an isothermal correlation relation between the liquid (l) and gas (g) phase diffusion coefficients, D(T, ρl) and D(T, ρg) is developed. This formula is based on a molecular level expression for the atom’s diffusion coefficient, D(T, ρ), and on numerical results for 1715 thermodynamic states of 25 rare gas fluids. These numerical results show that at fixed temperature, T, the decay time, τDIF, which governs the shortest time decay of an appropriate force autocorrelation function, ⟨F(t) F⟩0, is density (ρ)-independent. This independence holds since τDIF arises from the ρ-independent shortest time inertial motions of the solvent. The ρ independence implies the following l−g diffusion coefficient correlation equation: D −1(T, ρl) = (ρl/ρg) D −1(T, ρg) [ρl −1⟨F 0,l 2⟩/ρg −1⟨F 0,g 2⟩]. This relation is identical in form to the familiar (isolated binary-collision-like) empirical correlation formula for vibrational energy relaxation rate constants. This is because both correlation relations arise from inertial dynamics. Inertial dynamics always determines short-time fluid motions, so it is likely that similar correlation relations occur for all liquid phase chemical processes. These correlation relations will be most valuable for phenomena dominated by short time scale dynamics.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp1074175