Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations
Many scientific investigations involve observations on a vector Z of dichotomous variables Z$_i$, Z$_i$ = 0, 1, i = 1, $\cdots$, I, from populations or subpopulations $\Pi^{(m)}$, m = 1, $\cdots$, M. Two examples are given, one on attitudes towards science of low and high I.Q. groups of high-school...
Gespeichert in:
Veröffentlicht in: | Biometrics 1972-03, Vol.28 (1), p.203-221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | Biometrics |
container_volume | 28 |
creator | Martin, Donald C. Bradley, Ralph A. |
description | Many scientific investigations involve observations on a vector Z of dichotomous variables Z$_i$, Z$_i$ = 0, 1, i = 1, $\cdots$, I, from populations or subpopulations $\Pi^{(m)}$, m = 1, $\cdots$, M. Two examples are given, one on attitudes towards science of low and high I.Q. groups of high-school students and one on physiological responses of low and normal Apgar score groups of infants. A probability model is developed for $p^{(m)}(z) = P(Z = z | \Pi^{(m)})$ in the form p$^{(m)}$(z) = f(z)[1 + h$_S$(a$^{(m)}$, z)], m = 1, $\cdots$, M, f(z) $\geq$ 0, z $\epsilon \delta,$ where $\delta$ is the set of 2$^I$ discrete points in the sample space. The model depends on a set S of orthogonal polynomials $\phi_\gamma$(z) on $\delta, h_S(a^{(m)}, z) = \Sigma_{\gamma\epsilon S}a^{(m)}_\gamma \phi_\gamma (z), a^{(m)}$ being a distinguishing vector of parameters for $\Pi^{(m)}$. For special S, analogy of the model with that for a 2$^I$-factorial is noted. Benefits arise when I is large and N, the total sample size, is small relative to 2$^I$. Estimation of parameters f(z), z $\epsilon \delta$, and a$^{(m)}, m = 1, \cdots, M$, subject to appropriate constraints is considered. Application to classification procedures is discussed and illustrated for the examples. |
doi_str_mv | 10.2307/2528968 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_81413114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2528968</jstor_id><sourcerecordid>2528968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6acec6cf41f3bac47076ecd44d77eac8fb224ccaeca64c8b3c142c2cdd00022b3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotVbxFwhZiG46mtc8upRaH9BiFwqCiyFzJ8GUTFOTjNB_79gO7lxd7j0fh3sOQueU3DBO8luWsmKSFQdoSFNBEyIYOURDQkiWcEHfj9FJCKtunaSEDdAgJTRlfDJEH0vvKlkZa-IWL1ytbBjjWYimkdG49RjLdY2nVoZgtIHdDWvn8aK10XxLb2RU-N7Ap4uucW3AS7dp7Y4Lp-hISxvUWT9H6O1h9jp9SuYvj8_Tu3kCPKcxySQoyEALqnklQeQkzxTUQtR5riQUumJMAEgFMhNQVByoYMCgrrs8jFV8hK72vhvvvloVYtmYAMpauVbdS2VBBeWUig683oPgXQhe6XLju6B-W1JS_tZY9jV25EVv2VaNqv-4vrdOv9zrqxCd_9fmB_Wcefw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81413114</pqid></control><display><type>article</type><title>Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Martin, Donald C. ; Bradley, Ralph A.</creator><creatorcontrib>Martin, Donald C. ; Bradley, Ralph A.</creatorcontrib><description>Many scientific investigations involve observations on a vector Z of dichotomous variables Z$_i$, Z$_i$ = 0, 1, i = 1, $\cdots$, I, from populations or subpopulations $\Pi^{(m)}$, m = 1, $\cdots$, M. Two examples are given, one on attitudes towards science of low and high I.Q. groups of high-school students and one on physiological responses of low and normal Apgar score groups of infants. A probability model is developed for $p^{(m)}(z) = P(Z = z | \Pi^{(m)})$ in the form p$^{(m)}$(z) = f(z)[1 + h$_S$(a$^{(m)}$, z)], m = 1, $\cdots$, M, f(z) $\geq$ 0, z $\epsilon \delta,$ where $\delta$ is the set of 2$^I$ discrete points in the sample space. The model depends on a set S of orthogonal polynomials $\phi_\gamma$(z) on $\delta, h_S(a^{(m)}, z) = \Sigma_{\gamma\epsilon S}a^{(m)}_\gamma \phi_\gamma (z), a^{(m)}$ being a distinguishing vector of parameters for $\Pi^{(m)}$. For special S, analogy of the model with that for a 2$^I$-factorial is noted. Benefits arise when I is large and N, the total sample size, is small relative to 2$^I$. Estimation of parameters f(z), z $\epsilon \delta$, and a$^{(m)}, m = 1, \cdots, M$, subject to appropriate constraints is considered. Application to classification procedures is discussed and illustrated for the examples.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2528968</identifier><identifier>PMID: 5015239</identifier><language>eng</language><publisher>United States: Biometric Society</publisher><subject>Apgar Score ; Attitude ; Biometrics ; Estimators ; Factor Analysis, Statistical ; Intelligence Tests ; Mathematical procedures ; Mathematical vectors ; Models, Theoretical ; Parametric models ; Polynomials ; Population - classification ; Probabilities ; Probability ; Probability distributions ; Sample size ; Science</subject><ispartof>Biometrics, 1972-03, Vol.28 (1), p.203-221</ispartof><rights>Copyright 1972 The Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6acec6cf41f3bac47076ecd44d77eac8fb224ccaeca64c8b3c142c2cdd00022b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2528968$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2528968$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/5015239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Donald C.</creatorcontrib><creatorcontrib>Bradley, Ralph A.</creatorcontrib><title>Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many scientific investigations involve observations on a vector Z of dichotomous variables Z$_i$, Z$_i$ = 0, 1, i = 1, $\cdots$, I, from populations or subpopulations $\Pi^{(m)}$, m = 1, $\cdots$, M. Two examples are given, one on attitudes towards science of low and high I.Q. groups of high-school students and one on physiological responses of low and normal Apgar score groups of infants. A probability model is developed for $p^{(m)}(z) = P(Z = z | \Pi^{(m)})$ in the form p$^{(m)}$(z) = f(z)[1 + h$_S$(a$^{(m)}$, z)], m = 1, $\cdots$, M, f(z) $\geq$ 0, z $\epsilon \delta,$ where $\delta$ is the set of 2$^I$ discrete points in the sample space. The model depends on a set S of orthogonal polynomials $\phi_\gamma$(z) on $\delta, h_S(a^{(m)}, z) = \Sigma_{\gamma\epsilon S}a^{(m)}_\gamma \phi_\gamma (z), a^{(m)}$ being a distinguishing vector of parameters for $\Pi^{(m)}$. For special S, analogy of the model with that for a 2$^I$-factorial is noted. Benefits arise when I is large and N, the total sample size, is small relative to 2$^I$. Estimation of parameters f(z), z $\epsilon \delta$, and a$^{(m)}, m = 1, \cdots, M$, subject to appropriate constraints is considered. Application to classification procedures is discussed and illustrated for the examples.</description><subject>Apgar Score</subject><subject>Attitude</subject><subject>Biometrics</subject><subject>Estimators</subject><subject>Factor Analysis, Statistical</subject><subject>Intelligence Tests</subject><subject>Mathematical procedures</subject><subject>Mathematical vectors</subject><subject>Models, Theoretical</subject><subject>Parametric models</subject><subject>Polynomials</subject><subject>Population - classification</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability distributions</subject><subject>Sample size</subject><subject>Science</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEUhYMotVbxFwhZiG46mtc8upRaH9BiFwqCiyFzJ8GUTFOTjNB_79gO7lxd7j0fh3sOQueU3DBO8luWsmKSFQdoSFNBEyIYOURDQkiWcEHfj9FJCKtunaSEDdAgJTRlfDJEH0vvKlkZa-IWL1ytbBjjWYimkdG49RjLdY2nVoZgtIHdDWvn8aK10XxLb2RU-N7Ap4uucW3AS7dp7Y4Lp-hISxvUWT9H6O1h9jp9SuYvj8_Tu3kCPKcxySQoyEALqnklQeQkzxTUQtR5riQUumJMAEgFMhNQVByoYMCgrrs8jFV8hK72vhvvvloVYtmYAMpauVbdS2VBBeWUig683oPgXQhe6XLju6B-W1JS_tZY9jV25EVv2VaNqv-4vrdOv9zrqxCd_9fmB_Wcefw</recordid><startdate>197203</startdate><enddate>197203</enddate><creator>Martin, Donald C.</creator><creator>Bradley, Ralph A.</creator><general>Biometric Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>197203</creationdate><title>Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations</title><author>Martin, Donald C. ; Bradley, Ralph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6acec6cf41f3bac47076ecd44d77eac8fb224ccaeca64c8b3c142c2cdd00022b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>Apgar Score</topic><topic>Attitude</topic><topic>Biometrics</topic><topic>Estimators</topic><topic>Factor Analysis, Statistical</topic><topic>Intelligence Tests</topic><topic>Mathematical procedures</topic><topic>Mathematical vectors</topic><topic>Models, Theoretical</topic><topic>Parametric models</topic><topic>Polynomials</topic><topic>Population - classification</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability distributions</topic><topic>Sample size</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Donald C.</creatorcontrib><creatorcontrib>Bradley, Ralph A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Donald C.</au><au>Bradley, Ralph A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1972-03</date><risdate>1972</risdate><volume>28</volume><issue>1</issue><spage>203</spage><epage>221</epage><pages>203-221</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Many scientific investigations involve observations on a vector Z of dichotomous variables Z$_i$, Z$_i$ = 0, 1, i = 1, $\cdots$, I, from populations or subpopulations $\Pi^{(m)}$, m = 1, $\cdots$, M. Two examples are given, one on attitudes towards science of low and high I.Q. groups of high-school students and one on physiological responses of low and normal Apgar score groups of infants. A probability model is developed for $p^{(m)}(z) = P(Z = z | \Pi^{(m)})$ in the form p$^{(m)}$(z) = f(z)[1 + h$_S$(a$^{(m)}$, z)], m = 1, $\cdots$, M, f(z) $\geq$ 0, z $\epsilon \delta,$ where $\delta$ is the set of 2$^I$ discrete points in the sample space. The model depends on a set S of orthogonal polynomials $\phi_\gamma$(z) on $\delta, h_S(a^{(m)}, z) = \Sigma_{\gamma\epsilon S}a^{(m)}_\gamma \phi_\gamma (z), a^{(m)}$ being a distinguishing vector of parameters for $\Pi^{(m)}$. For special S, analogy of the model with that for a 2$^I$-factorial is noted. Benefits arise when I is large and N, the total sample size, is small relative to 2$^I$. Estimation of parameters f(z), z $\epsilon \delta$, and a$^{(m)}, m = 1, \cdots, M$, subject to appropriate constraints is considered. Application to classification procedures is discussed and illustrated for the examples.</abstract><cop>United States</cop><pub>Biometric Society</pub><pmid>5015239</pmid><doi>10.2307/2528968</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 1972-03, Vol.28 (1), p.203-221 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_81413114 |
source | MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Apgar Score Attitude Biometrics Estimators Factor Analysis, Statistical Intelligence Tests Mathematical procedures Mathematical vectors Models, Theoretical Parametric models Polynomials Population - classification Probabilities Probability Probability distributions Sample size Science |
title | Probability Models, Estimation, and Classification for Multivariate Dichotomous Populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20Models,%20Estimation,%20and%20Classification%20for%20Multivariate%20Dichotomous%20Populations&rft.jtitle=Biometrics&rft.au=Martin,%20Donald%20C.&rft.date=1972-03&rft.volume=28&rft.issue=1&rft.spage=203&rft.epage=221&rft.pages=203-221&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2528968&rft_dat=%3Cjstor_proqu%3E2528968%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=81413114&rft_id=info:pmid/5015239&rft_jstor_id=2528968&rfr_iscdi=true |