An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic

We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2010-11, Vol.44 (22), p.8574-8580
Hauptverfasser: Soerensen, Anne L, Sunderland, Elsie M, Holmes, Christopher D, Jacob, Daniel J, Yantosca, Robert M, Skov, Henrik, Christensen, Jesper H, Strode, Sarah A, Mason, Robert P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8580
container_issue 22
container_start_page 8574
container_title Environmental science & technology
container_volume 44
creator Soerensen, Anne L
Sunderland, Elsie M
Holmes, Christopher D
Jacob, Daniel J
Yantosca, Robert M
Skov, Henrik
Christensen, Jesper H
Strode, Sarah A
Mason, Robert P
description We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0/HgII redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y−1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.
doi_str_mv 10.1021/es102032g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_812128240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>812128240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-a1f3da26710de8ba86e6392040f4adb9c98d8124bbb6ebf191b7d6063c296da43</originalsourceid><addsrcrecordid>eNpl0MFu1DAQBmALgei2cOAFkIWEKg4pYztxHG6rVWkrtXAAJG7R2J7spsrGrZ1U7dtj1KUr0dNcPv8z_hl7J-BEgBSfKeUBSq5fsIWoJBSVqcRLtgAQqmiU_n3ADlO6BgCpwLxmBxKaWlWlXDBajvxiexPDHXl-NgSLA78KngbehciXfSx-EPLTe7fBcU08dPyKopvjwxd-3q83fBVGR-MUcerDmHiOiXzaEP8W4rThy2nAcerdG_aqwyHR2908Yr--nv5cnReX388uVsvLAkvQU4GiUx6lrgV4MhaNJq0aCSV0JXrbuMZ4I2RprdVkO9EIW3sNWjnZaI-lOmLHj7n5Q7czpand9snRkK-gMKc2PxbSyBKy_PCfvA5zHPNxGdW1qZqqzujTI3IxpBSpa29iv8X40Apo_zbfPjWf7ftd4Gy35J_kv6oz-LgDmBwOXcTR9WnvVKmVEWLv0KX9Uc8X_gFGQJWJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817785957</pqid></control><display><type>article</type><title>An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic</title><source>ACS Publications</source><source>MEDLINE</source><creator>Soerensen, Anne L ; Sunderland, Elsie M ; Holmes, Christopher D ; Jacob, Daniel J ; Yantosca, Robert M ; Skov, Henrik ; Christensen, Jesper H ; Strode, Sarah A ; Mason, Robert P</creator><creatorcontrib>Soerensen, Anne L ; Sunderland, Elsie M ; Holmes, Christopher D ; Jacob, Daniel J ; Yantosca, Robert M ; Skov, Henrik ; Christensen, Jesper H ; Strode, Sarah A ; Mason, Robert P</creatorcontrib><description>We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0/HgII redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y−1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es102032g</identifier><identifier>PMID: 20973542</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air Pollutants - analysis ; Air Pollutants - chemistry ; Applied sciences ; Atlantic Ocean ; Atmosphere - chemistry ; Atmospheric chemistry ; Biogeochemistry ; Environmental Modeling ; Environmental Monitoring - methods ; Environmental science ; Exact sciences and technology ; Mercury ; Mercury - analysis ; Mercury - chemistry ; Models, Chemical ; Ocean-atmosphere interaction ; Oceans ; Pollution ; Seawater - chemistry ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry</subject><ispartof>Environmental science &amp; technology, 2010-11, Vol.44 (22), p.8574-8580</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 15, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-a1f3da26710de8ba86e6392040f4adb9c98d8124bbb6ebf191b7d6063c296da43</citedby><cites>FETCH-LOGICAL-a406t-a1f3da26710de8ba86e6392040f4adb9c98d8124bbb6ebf191b7d6063c296da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es102032g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es102032g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23463811$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20973542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soerensen, Anne L</creatorcontrib><creatorcontrib>Sunderland, Elsie M</creatorcontrib><creatorcontrib>Holmes, Christopher D</creatorcontrib><creatorcontrib>Jacob, Daniel J</creatorcontrib><creatorcontrib>Yantosca, Robert M</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Christensen, Jesper H</creatorcontrib><creatorcontrib>Strode, Sarah A</creatorcontrib><creatorcontrib>Mason, Robert P</creatorcontrib><title>An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0/HgII redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y−1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.</description><subject>Air Pollutants - analysis</subject><subject>Air Pollutants - chemistry</subject><subject>Applied sciences</subject><subject>Atlantic Ocean</subject><subject>Atmosphere - chemistry</subject><subject>Atmospheric chemistry</subject><subject>Biogeochemistry</subject><subject>Environmental Modeling</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Mercury</subject><subject>Mercury - analysis</subject><subject>Mercury - chemistry</subject><subject>Models, Chemical</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Pollution</subject><subject>Seawater - chemistry</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0MFu1DAQBmALgei2cOAFkIWEKg4pYztxHG6rVWkrtXAAJG7R2J7spsrGrZ1U7dtj1KUr0dNcPv8z_hl7J-BEgBSfKeUBSq5fsIWoJBSVqcRLtgAQqmiU_n3ADlO6BgCpwLxmBxKaWlWlXDBajvxiexPDHXl-NgSLA78KngbehciXfSx-EPLTe7fBcU08dPyKopvjwxd-3q83fBVGR-MUcerDmHiOiXzaEP8W4rThy2nAcerdG_aqwyHR2908Yr--nv5cnReX388uVsvLAkvQU4GiUx6lrgV4MhaNJq0aCSV0JXrbuMZ4I2RprdVkO9EIW3sNWjnZaI-lOmLHj7n5Q7czpand9snRkK-gMKc2PxbSyBKy_PCfvA5zHPNxGdW1qZqqzujTI3IxpBSpa29iv8X40Apo_zbfPjWf7ftd4Gy35J_kv6oz-LgDmBwOXcTR9WnvVKmVEWLv0KX9Uc8X_gFGQJWJ</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Soerensen, Anne L</creator><creator>Sunderland, Elsie M</creator><creator>Holmes, Christopher D</creator><creator>Jacob, Daniel J</creator><creator>Yantosca, Robert M</creator><creator>Skov, Henrik</creator><creator>Christensen, Jesper H</creator><creator>Strode, Sarah A</creator><creator>Mason, Robert P</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20101115</creationdate><title>An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic</title><author>Soerensen, Anne L ; Sunderland, Elsie M ; Holmes, Christopher D ; Jacob, Daniel J ; Yantosca, Robert M ; Skov, Henrik ; Christensen, Jesper H ; Strode, Sarah A ; Mason, Robert P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-a1f3da26710de8ba86e6392040f4adb9c98d8124bbb6ebf191b7d6063c296da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air Pollutants - analysis</topic><topic>Air Pollutants - chemistry</topic><topic>Applied sciences</topic><topic>Atlantic Ocean</topic><topic>Atmosphere - chemistry</topic><topic>Atmospheric chemistry</topic><topic>Biogeochemistry</topic><topic>Environmental Modeling</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Mercury</topic><topic>Mercury - analysis</topic><topic>Mercury - chemistry</topic><topic>Models, Chemical</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Pollution</topic><topic>Seawater - chemistry</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soerensen, Anne L</creatorcontrib><creatorcontrib>Sunderland, Elsie M</creatorcontrib><creatorcontrib>Holmes, Christopher D</creatorcontrib><creatorcontrib>Jacob, Daniel J</creatorcontrib><creatorcontrib>Yantosca, Robert M</creatorcontrib><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Christensen, Jesper H</creatorcontrib><creatorcontrib>Strode, Sarah A</creatorcontrib><creatorcontrib>Mason, Robert P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soerensen, Anne L</au><au>Sunderland, Elsie M</au><au>Holmes, Christopher D</au><au>Jacob, Daniel J</au><au>Yantosca, Robert M</au><au>Skov, Henrik</au><au>Christensen, Jesper H</au><au>Strode, Sarah A</au><au>Mason, Robert P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>44</volume><issue>22</issue><spage>8574</spage><epage>8580</epage><pages>8574-8580</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0/HgII redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y−1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20973542</pmid><doi>10.1021/es102032g</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2010-11, Vol.44 (22), p.8574-8580
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_812128240
source ACS Publications; MEDLINE
subjects Air Pollutants - analysis
Air Pollutants - chemistry
Applied sciences
Atlantic Ocean
Atmosphere - chemistry
Atmospheric chemistry
Biogeochemistry
Environmental Modeling
Environmental Monitoring - methods
Environmental science
Exact sciences and technology
Mercury
Mercury - analysis
Mercury - chemistry
Models, Chemical
Ocean-atmosphere interaction
Oceans
Pollution
Seawater - chemistry
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
title An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Global%20Model%20for%20Air-Sea%20Exchange%20of%20Mercury:%20High%20Concentrations%20over%20the%20North%20Atlantic&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Soerensen,%20Anne%20L&rft.date=2010-11-15&rft.volume=44&rft.issue=22&rft.spage=8574&rft.epage=8580&rft.pages=8574-8580&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es102032g&rft_dat=%3Cproquest_cross%3E812128240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817785957&rft_id=info:pmid/20973542&rfr_iscdi=true