Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces

Previous investigators have predicted that by optimizing the optical configuration of the light-pipe interface between a gas chromatograph and a Fourier transform infrared spectrometer and utilizing detectors with areas as small as 0.01 mm/sup 2/, detection limits might be reduced to the subnanogram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anal. Chem.; (United States) 1987-10, Vol.59 (19), p.2356-2361
Hauptverfasser: Henry, David E, Giorgetti, Aldo, Haefner, Andrew M, Griffiths, Peter R, Gurka, Donald F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2361
container_issue 19
container_start_page 2356
container_title Anal. Chem.; (United States)
container_volume 59
creator Henry, David E
Giorgetti, Aldo
Haefner, Andrew M
Griffiths, Peter R
Gurka, Donald F
description Previous investigators have predicted that by optimizing the optical configuration of the light-pipe interface between a gas chromatograph and a Fourier transform infrared spectrometer and utilizing detectors with areas as small as 0.01 mm/sup 2/, detection limits might be reduced to the subnanogram level. The results presented in this report indicate that this is presently not possible and suggest that the detection limits at ambient temperatures of a practical light-pipe interface can be improved by no more than 50% compared to contemporary systems. Three optical configurations are evaluated for their ability to discriminate against emission from the end of a hot light-pipe. Of these, the most effective in reducing the signal loss normally encountered at elevated light-pipe temperatures utilizes an aperture at a focus between the light-pipe and detector. A loss in signal of only 20% is observed when the temperature of the light-pipe is raised from ambient to 300/sup 0/C by using this optical configuration.
doi_str_mv 10.1021/ac00146a009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_81099174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>81099174</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-e89edf7fe47b64f86ec15b96c4daf655cd55c7ea56302ab8a1b077ff923359e03</originalsourceid><addsrcrecordid>eNptkcGL1DAUxoso6-zqybMQRPQgdZM2TdqjDO4qLKziCt7Ca_rSZp023SQFx79-M3QYPHgIIfl-fLz3fVn2itGPjBbsEjSljAugtHmSbVhV0FzUdfE021BKy7yQlD7PzkO4TxijTJxlZ6WQnHO5yfa3c7Sj_WunnsQBiUtPDTui3WRsv3iI1k3EOE92th9iPtsZSQ-B6MG7EaLrPczD_vLKLd6iJ9HDFBI-EjsZDx47EmbUMcEY_T79RvQGNIYX2TMDu4Avj_dF9vPq8932S35ze_11--kmB85ozLFusDPSIJet4KYWqFnVNkLzDoyoKt2lIxEqUdIC2hpYS6U0pinKsmqQlhfZm9XXhWhV0DaiHtJ6U5pKCVrLpjpA71Zo9u5hwRDVaIPG3Q4mdEtQNaNNwyRP4IcV1N6F4NGo2dsR_F4xqg5tqH_aSPTro-3Sjtid2GP8SX971CGk1FNgk7bhhEmRyuQHm3zFbIj45ySD_62ELGWl7r79UL9KuU221-p74t-vPOig7lMzUwr4vwM-AsGEr_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81099174</pqid></control><display><type>article</type><title>Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces</title><source>ACS Publications</source><source>MEDLINE</source><creator>Henry, David E ; Giorgetti, Aldo ; Haefner, Andrew M ; Griffiths, Peter R ; Gurka, Donald F</creator><creatorcontrib>Henry, David E ; Giorgetti, Aldo ; Haefner, Andrew M ; Griffiths, Peter R ; Gurka, Donald F ; Univ. of California, Riverside</creatorcontrib><description>Previous investigators have predicted that by optimizing the optical configuration of the light-pipe interface between a gas chromatograph and a Fourier transform infrared spectrometer and utilizing detectors with areas as small as 0.01 mm/sup 2/, detection limits might be reduced to the subnanogram level. The results presented in this report indicate that this is presently not possible and suggest that the detection limits at ambient temperatures of a practical light-pipe interface can be improved by no more than 50% compared to contemporary systems. Three optical configurations are evaluated for their ability to discriminate against emission from the end of a hot light-pipe. Of these, the most effective in reducing the signal loss normally encountered at elevated light-pipe temperatures utilizes an aperture at a focus between the light-pipe and detector. A loss in signal of only 20% is observed when the temperature of the light-pipe is raised from ambient to 300/sup 0/C by using this optical configuration.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac00146a009</identifier><identifier>PMID: 3674447</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>400102 - Chemical &amp; Spectral Procedures ; 400105 - Separation Procedures ; ABSORPTION SPECTROSCOPY ; Analytical chemistry ; BLOOD VESSELS ; BODY ; CAPILLARIES ; CARBOXYLIC ACID SALTS ; CARDIOVASCULAR SYSTEM ; CHEMICAL ANALYSIS ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; CHROMATOGRAPHY ; Chromatography, Gas - instrumentation ; DATA ; ENVIRONMENTAL MATERIALS ; Exact sciences and technology ; EXPERIMENTAL DATA ; FIBER OPTICS ; Fourier Analysis ; FOURIER TRANSFORM SPECTROMETERS ; Gas chromatographic methods ; GAS CHROMATOGRAPHY ; INFORMATION ; INFRARED SPECTRA ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTERFACES ; MATERIALS ; MEASURING INSTRUMENTS ; METHACRYLATES ; NUMERICAL DATA ; OPTICAL SYSTEMS ; OPTIMIZATION ; ORGANS ; QUALITATIVE CHEMICAL ANALYSIS ; SEPARATION PROCESSES ; SPECTRA ; SPECTROMETERS ; Spectrophotometry, Infrared - instrumentation ; SPECTROSCOPY ; TEMPERATURE DEPENDENCE ; TRACE AMOUNTS</subject><ispartof>Anal. Chem.; (United States), 1987-10, Vol.59 (19), p.2356-2361</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-e89edf7fe47b64f86ec15b96c4daf655cd55c7ea56302ab8a1b077ff923359e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac00146a009$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac00146a009$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7615249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3674447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6087950$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry, David E</creatorcontrib><creatorcontrib>Giorgetti, Aldo</creatorcontrib><creatorcontrib>Haefner, Andrew M</creatorcontrib><creatorcontrib>Griffiths, Peter R</creatorcontrib><creatorcontrib>Gurka, Donald F</creatorcontrib><creatorcontrib>Univ. of California, Riverside</creatorcontrib><title>Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces</title><title>Anal. Chem.; (United States)</title><addtitle>Anal. Chem</addtitle><description>Previous investigators have predicted that by optimizing the optical configuration of the light-pipe interface between a gas chromatograph and a Fourier transform infrared spectrometer and utilizing detectors with areas as small as 0.01 mm/sup 2/, detection limits might be reduced to the subnanogram level. The results presented in this report indicate that this is presently not possible and suggest that the detection limits at ambient temperatures of a practical light-pipe interface can be improved by no more than 50% compared to contemporary systems. Three optical configurations are evaluated for their ability to discriminate against emission from the end of a hot light-pipe. Of these, the most effective in reducing the signal loss normally encountered at elevated light-pipe temperatures utilizes an aperture at a focus between the light-pipe and detector. A loss in signal of only 20% is observed when the temperature of the light-pipe is raised from ambient to 300/sup 0/C by using this optical configuration.</description><subject>400102 - Chemical &amp; Spectral Procedures</subject><subject>400105 - Separation Procedures</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>Analytical chemistry</subject><subject>BLOOD VESSELS</subject><subject>BODY</subject><subject>CAPILLARIES</subject><subject>CARBOXYLIC ACID SALTS</subject><subject>CARDIOVASCULAR SYSTEM</subject><subject>CHEMICAL ANALYSIS</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>CHROMATOGRAPHY</subject><subject>Chromatography, Gas - instrumentation</subject><subject>DATA</subject><subject>ENVIRONMENTAL MATERIALS</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FIBER OPTICS</subject><subject>Fourier Analysis</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>Gas chromatographic methods</subject><subject>GAS CHROMATOGRAPHY</subject><subject>INFORMATION</subject><subject>INFRARED SPECTRA</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTERFACES</subject><subject>MATERIALS</subject><subject>MEASURING INSTRUMENTS</subject><subject>METHACRYLATES</subject><subject>NUMERICAL DATA</subject><subject>OPTICAL SYSTEMS</subject><subject>OPTIMIZATION</subject><subject>ORGANS</subject><subject>QUALITATIVE CHEMICAL ANALYSIS</subject><subject>SEPARATION PROCESSES</subject><subject>SPECTRA</subject><subject>SPECTROMETERS</subject><subject>Spectrophotometry, Infrared - instrumentation</subject><subject>SPECTROSCOPY</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TRACE AMOUNTS</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcGL1DAUxoso6-zqybMQRPQgdZM2TdqjDO4qLKziCt7Ca_rSZp023SQFx79-M3QYPHgIIfl-fLz3fVn2itGPjBbsEjSljAugtHmSbVhV0FzUdfE021BKy7yQlD7PzkO4TxijTJxlZ6WQnHO5yfa3c7Sj_WunnsQBiUtPDTui3WRsv3iI1k3EOE92th9iPtsZSQ-B6MG7EaLrPczD_vLKLd6iJ9HDFBI-EjsZDx47EmbUMcEY_T79RvQGNIYX2TMDu4Avj_dF9vPq8932S35ze_11--kmB85ozLFusDPSIJet4KYWqFnVNkLzDoyoKt2lIxEqUdIC2hpYS6U0pinKsmqQlhfZm9XXhWhV0DaiHtJ6U5pKCVrLpjpA71Zo9u5hwRDVaIPG3Q4mdEtQNaNNwyRP4IcV1N6F4NGo2dsR_F4xqg5tqH_aSPTro-3Sjtid2GP8SX971CGk1FNgk7bhhEmRyuQHm3zFbIj45ySD_62ELGWl7r79UL9KuU221-p74t-vPOig7lMzUwr4vwM-AsGEr_M</recordid><startdate>19871001</startdate><enddate>19871001</enddate><creator>Henry, David E</creator><creator>Giorgetti, Aldo</creator><creator>Haefner, Andrew M</creator><creator>Griffiths, Peter R</creator><creator>Gurka, Donald F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19871001</creationdate><title>Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces</title><author>Henry, David E ; Giorgetti, Aldo ; Haefner, Andrew M ; Griffiths, Peter R ; Gurka, Donald F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-e89edf7fe47b64f86ec15b96c4daf655cd55c7ea56302ab8a1b077ff923359e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>400102 - Chemical &amp; Spectral Procedures</topic><topic>400105 - Separation Procedures</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>Analytical chemistry</topic><topic>BLOOD VESSELS</topic><topic>BODY</topic><topic>CAPILLARIES</topic><topic>CARBOXYLIC ACID SALTS</topic><topic>CARDIOVASCULAR SYSTEM</topic><topic>CHEMICAL ANALYSIS</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>CHROMATOGRAPHY</topic><topic>Chromatography, Gas - instrumentation</topic><topic>DATA</topic><topic>ENVIRONMENTAL MATERIALS</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FIBER OPTICS</topic><topic>Fourier Analysis</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>Gas chromatographic methods</topic><topic>GAS CHROMATOGRAPHY</topic><topic>INFORMATION</topic><topic>INFRARED SPECTRA</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTERFACES</topic><topic>MATERIALS</topic><topic>MEASURING INSTRUMENTS</topic><topic>METHACRYLATES</topic><topic>NUMERICAL DATA</topic><topic>OPTICAL SYSTEMS</topic><topic>OPTIMIZATION</topic><topic>ORGANS</topic><topic>QUALITATIVE CHEMICAL ANALYSIS</topic><topic>SEPARATION PROCESSES</topic><topic>SPECTRA</topic><topic>SPECTROMETERS</topic><topic>Spectrophotometry, Infrared - instrumentation</topic><topic>SPECTROSCOPY</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TRACE AMOUNTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, David E</creatorcontrib><creatorcontrib>Giorgetti, Aldo</creatorcontrib><creatorcontrib>Haefner, Andrew M</creatorcontrib><creatorcontrib>Griffiths, Peter R</creatorcontrib><creatorcontrib>Gurka, Donald F</creatorcontrib><creatorcontrib>Univ. of California, Riverside</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Anal. Chem.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry, David E</au><au>Giorgetti, Aldo</au><au>Haefner, Andrew M</au><au>Griffiths, Peter R</au><au>Gurka, Donald F</au><aucorp>Univ. of California, Riverside</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces</atitle><jtitle>Anal. Chem.; (United States)</jtitle><addtitle>Anal. Chem</addtitle><date>1987-10-01</date><risdate>1987</risdate><volume>59</volume><issue>19</issue><spage>2356</spage><epage>2361</epage><pages>2356-2361</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Previous investigators have predicted that by optimizing the optical configuration of the light-pipe interface between a gas chromatograph and a Fourier transform infrared spectrometer and utilizing detectors with areas as small as 0.01 mm/sup 2/, detection limits might be reduced to the subnanogram level. The results presented in this report indicate that this is presently not possible and suggest that the detection limits at ambient temperatures of a practical light-pipe interface can be improved by no more than 50% compared to contemporary systems. Three optical configurations are evaluated for their ability to discriminate against emission from the end of a hot light-pipe. Of these, the most effective in reducing the signal loss normally encountered at elevated light-pipe temperatures utilizes an aperture at a focus between the light-pipe and detector. A loss in signal of only 20% is observed when the temperature of the light-pipe is raised from ambient to 300/sup 0/C by using this optical configuration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>3674447</pmid><doi>10.1021/ac00146a009</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Anal. Chem.; (United States), 1987-10, Vol.59 (19), p.2356-2361
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_81099174
source ACS Publications; MEDLINE
subjects 400102 - Chemical & Spectral Procedures
400105 - Separation Procedures
ABSORPTION SPECTROSCOPY
Analytical chemistry
BLOOD VESSELS
BODY
CAPILLARIES
CARBOXYLIC ACID SALTS
CARDIOVASCULAR SYSTEM
CHEMICAL ANALYSIS
Chemistry
Chromatographic methods and physical methods associated with chromatography
CHROMATOGRAPHY
Chromatography, Gas - instrumentation
DATA
ENVIRONMENTAL MATERIALS
Exact sciences and technology
EXPERIMENTAL DATA
FIBER OPTICS
Fourier Analysis
FOURIER TRANSFORM SPECTROMETERS
Gas chromatographic methods
GAS CHROMATOGRAPHY
INFORMATION
INFRARED SPECTRA
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
INTERFACES
MATERIALS
MEASURING INSTRUMENTS
METHACRYLATES
NUMERICAL DATA
OPTICAL SYSTEMS
OPTIMIZATION
ORGANS
QUALITATIVE CHEMICAL ANALYSIS
SEPARATION PROCESSES
SPECTRA
SPECTROMETERS
Spectrophotometry, Infrared - instrumentation
SPECTROSCOPY
TEMPERATURE DEPENDENCE
TRACE AMOUNTS
title Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20optical%20configuration%20for%20light-pipe%20gas%20chromatography/Fourier%20transform%20infrared%20spectrometry%20interfaces&rft.jtitle=Anal.%20Chem.;%20(United%20States)&rft.au=Henry,%20David%20E&rft.aucorp=Univ.%20of%20California,%20Riverside&rft.date=1987-10-01&rft.volume=59&rft.issue=19&rft.spage=2356&rft.epage=2361&rft.pages=2356-2361&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac00146a009&rft_dat=%3Cproquest_osti_%3E81099174%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=81099174&rft_id=info:pmid/3674447&rfr_iscdi=true