Isethionic acid

This chapter discusses isethionic acid. The occurrence of isethionate as the major anion in squid axoplasm encouraged the view that this unusual sulfonate had an important role in the bioelectric behavior of the squid axion. While isethionate is found in mammalian tissue at only a small fraction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 1987, Vol.143, p.172-177
1. Verfasser: Fellman, Jack H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 172
container_title Methods in Enzymology
container_volume 143
creator Fellman, Jack H.
description This chapter discusses isethionic acid. The occurrence of isethionate as the major anion in squid axoplasm encouraged the view that this unusual sulfonate had an important role in the bioelectric behavior of the squid axion. While isethionate is found in mammalian tissue at only a small fraction of the 200 μmol/g concentration observed in squid axoplasm, additional interest was stimulated by the structural relationship and possible biological relationship between isethionate (2-hydroxyethyl sulfonate) and taurine (2-aminoethyl sulfonate). Indeed early studies using isotopically labeled taurine revealed the in vivo and in vitro conversion taurine to isethionate. Early analytical procedures involved separation of the isethionate from contaminating anions using ion-exchange resins followed by digestion with nitric acid. The sulfate formed was isolated and determined gravimetrically as the barium salt. The conflicting results reported by various workers on the metabolic origin and fate of isethionate encouraged the development of gas-liquid chromatographic procedures. Three methods are discussed that use methyl ether/methyl ester, silyi, or chloroethylsulfonylchloride derivatives. Employment of the chlorinated derivative extended the sensitivity of the gas chromatographic analysis manyfold because of the intrinsic sensitivity of the electron capture detector. With this method, sensitivity was greater than 5 ng/g tissue.
doi_str_mv 10.1016/0076-6879(87)43032-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_81040241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0076687987430322</els_id><sourcerecordid>81040241</sourcerecordid><originalsourceid>FETCH-LOGICAL-e261t-f8a867bb2933ed1de52930aa5bae54f7169891f1c16207ed2159ff4f6ad78fe83</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMf1FqLf0DBk-hhNTPJ5uMiSPGjUPCi55DdTDDSdutmW_Dfu7XFuczA-zDMPIxdAL8DDuqec60KZbS9MfpWCi6wwAM2hLLUhbbGHLJTDggGuRR4xIb__Akb5_zF-5IWlVADNkCDIKQYsvNppu4zNctUX_k6hTN2HP0803jfR-zj-el98lrM3l6mk8dZQaigK6LxRumqQisEBQhU9hP3vqw8lTJqUNZYiFCDQq4pIJQ2RhmVD9pEMmLErnd7V23zvabcuUXKNc3nfknNOjsDXHKU0IOXe3BdLSi4VZsWvv1x-w_6_GGXU3_tJlHrcp1oWVNILdWdC01ywN3WoNsacVsjzmj3Z9Ch-AW321y3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81040241</pqid></control><display><type>article</type><title>Isethionic acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ScienceDirect eBooks</source><creator>Fellman, Jack H.</creator><creatorcontrib>Fellman, Jack H.</creatorcontrib><description>This chapter discusses isethionic acid. The occurrence of isethionate as the major anion in squid axoplasm encouraged the view that this unusual sulfonate had an important role in the bioelectric behavior of the squid axion. While isethionate is found in mammalian tissue at only a small fraction of the 200 μmol/g concentration observed in squid axoplasm, additional interest was stimulated by the structural relationship and possible biological relationship between isethionate (2-hydroxyethyl sulfonate) and taurine (2-aminoethyl sulfonate). Indeed early studies using isotopically labeled taurine revealed the in vivo and in vitro conversion taurine to isethionate. Early analytical procedures involved separation of the isethionate from contaminating anions using ion-exchange resins followed by digestion with nitric acid. The sulfate formed was isolated and determined gravimetrically as the barium salt. The conflicting results reported by various workers on the metabolic origin and fate of isethionate encouraged the development of gas-liquid chromatographic procedures. Three methods are discussed that use methyl ether/methyl ester, silyi, or chloroethylsulfonylchloride derivatives. Employment of the chlorinated derivative extended the sensitivity of the gas chromatographic analysis manyfold because of the intrinsic sensitivity of the electron capture detector. With this method, sensitivity was greater than 5 ng/g tissue.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 0121820432</identifier><identifier>ISBN: 9780121820435</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/0076-6879(87)43032-2</identifier><identifier>PMID: 2821343</identifier><language>eng</language><publisher>United States: Elsevier Science &amp; Technology</publisher><subject>Alkanesulfonates - analysis ; Animals ; Axons - analysis ; Chromatography, Gas - methods ; Decapodiformes ; Electrophoresis, Paper - methods ; Indicators and Reagents ; Isethionic Acid - analysis ; Liver - analysis ; Male ; Myocardium - analysis ; Rats ; Rats, Inbred Strains</subject><ispartof>Methods in Enzymology, 1987, Vol.143, p.172-177</ispartof><rights>1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0076-6879(87)43032-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,779,780,784,793,3459,3550,4024,11288,27923,27924,27925,45810,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2821343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fellman, Jack H.</creatorcontrib><title>Isethionic acid</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>This chapter discusses isethionic acid. The occurrence of isethionate as the major anion in squid axoplasm encouraged the view that this unusual sulfonate had an important role in the bioelectric behavior of the squid axion. While isethionate is found in mammalian tissue at only a small fraction of the 200 μmol/g concentration observed in squid axoplasm, additional interest was stimulated by the structural relationship and possible biological relationship between isethionate (2-hydroxyethyl sulfonate) and taurine (2-aminoethyl sulfonate). Indeed early studies using isotopically labeled taurine revealed the in vivo and in vitro conversion taurine to isethionate. Early analytical procedures involved separation of the isethionate from contaminating anions using ion-exchange resins followed by digestion with nitric acid. The sulfate formed was isolated and determined gravimetrically as the barium salt. The conflicting results reported by various workers on the metabolic origin and fate of isethionate encouraged the development of gas-liquid chromatographic procedures. Three methods are discussed that use methyl ether/methyl ester, silyi, or chloroethylsulfonylchloride derivatives. Employment of the chlorinated derivative extended the sensitivity of the gas chromatographic analysis manyfold because of the intrinsic sensitivity of the electron capture detector. With this method, sensitivity was greater than 5 ng/g tissue.</description><subject>Alkanesulfonates - analysis</subject><subject>Animals</subject><subject>Axons - analysis</subject><subject>Chromatography, Gas - methods</subject><subject>Decapodiformes</subject><subject>Electrophoresis, Paper - methods</subject><subject>Indicators and Reagents</subject><subject>Isethionic Acid - analysis</subject><subject>Liver - analysis</subject><subject>Male</subject><subject>Myocardium - analysis</subject><subject>Rats</subject><subject>Rats, Inbred Strains</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>0121820432</isbn><isbn>9780121820435</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMf1FqLf0DBk-hhNTPJ5uMiSPGjUPCi55DdTDDSdutmW_Dfu7XFuczA-zDMPIxdAL8DDuqec60KZbS9MfpWCi6wwAM2hLLUhbbGHLJTDggGuRR4xIb__Akb5_zF-5IWlVADNkCDIKQYsvNppu4zNctUX_k6hTN2HP0803jfR-zj-el98lrM3l6mk8dZQaigK6LxRumqQisEBQhU9hP3vqw8lTJqUNZYiFCDQq4pIJQ2RhmVD9pEMmLErnd7V23zvabcuUXKNc3nfknNOjsDXHKU0IOXe3BdLSi4VZsWvv1x-w_6_GGXU3_tJlHrcp1oWVNILdWdC01ywN3WoNsacVsjzmj3Z9Ch-AW321y3</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Fellman, Jack H.</creator><general>Elsevier Science &amp; Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>1987</creationdate><title>Isethionic acid</title><author>Fellman, Jack H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e261t-f8a867bb2933ed1de52930aa5bae54f7169891f1c16207ed2159ff4f6ad78fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Alkanesulfonates - analysis</topic><topic>Animals</topic><topic>Axons - analysis</topic><topic>Chromatography, Gas - methods</topic><topic>Decapodiformes</topic><topic>Electrophoresis, Paper - methods</topic><topic>Indicators and Reagents</topic><topic>Isethionic Acid - analysis</topic><topic>Liver - analysis</topic><topic>Male</topic><topic>Myocardium - analysis</topic><topic>Rats</topic><topic>Rats, Inbred Strains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellman, Jack H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellman, Jack H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isethionic acid</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>1987</date><risdate>1987</risdate><volume>143</volume><spage>172</spage><epage>177</epage><pages>172-177</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>0121820432</isbn><isbn>9780121820435</isbn><abstract>This chapter discusses isethionic acid. The occurrence of isethionate as the major anion in squid axoplasm encouraged the view that this unusual sulfonate had an important role in the bioelectric behavior of the squid axion. While isethionate is found in mammalian tissue at only a small fraction of the 200 μmol/g concentration observed in squid axoplasm, additional interest was stimulated by the structural relationship and possible biological relationship between isethionate (2-hydroxyethyl sulfonate) and taurine (2-aminoethyl sulfonate). Indeed early studies using isotopically labeled taurine revealed the in vivo and in vitro conversion taurine to isethionate. Early analytical procedures involved separation of the isethionate from contaminating anions using ion-exchange resins followed by digestion with nitric acid. The sulfate formed was isolated and determined gravimetrically as the barium salt. The conflicting results reported by various workers on the metabolic origin and fate of isethionate encouraged the development of gas-liquid chromatographic procedures. Three methods are discussed that use methyl ether/methyl ester, silyi, or chloroethylsulfonylchloride derivatives. Employment of the chlorinated derivative extended the sensitivity of the gas chromatographic analysis manyfold because of the intrinsic sensitivity of the electron capture detector. With this method, sensitivity was greater than 5 ng/g tissue.</abstract><cop>United States</cop><pub>Elsevier Science &amp; Technology</pub><pmid>2821343</pmid><doi>10.1016/0076-6879(87)43032-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 1987, Vol.143, p.172-177
issn 0076-6879
1557-7988
language eng
recordid cdi_proquest_miscellaneous_81040241
source MEDLINE; Elsevier ScienceDirect Journals Complete; ScienceDirect eBooks
subjects Alkanesulfonates - analysis
Animals
Axons - analysis
Chromatography, Gas - methods
Decapodiformes
Electrophoresis, Paper - methods
Indicators and Reagents
Isethionic Acid - analysis
Liver - analysis
Male
Myocardium - analysis
Rats
Rats, Inbred Strains
title Isethionic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isethionic%20acid&rft.jtitle=Methods%20in%20Enzymology&rft.au=Fellman,%20Jack%20H.&rft.date=1987&rft.volume=143&rft.spage=172&rft.epage=177&rft.pages=172-177&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=0121820432&rft.isbn_list=9780121820435&rft_id=info:doi/10.1016/0076-6879(87)43032-2&rft_dat=%3Cproquest_pubme%3E81040241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=81040241&rft_id=info:pmid/2821343&rft_els_id=0076687987430322&rfr_iscdi=true