Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides

A concept has been suggested that the role of immunogen is to stimulate resting cells to enter a phase of the cell cycle in which the synthesis of immunoglobulin is obligatory. This process conceivably involves the initial union of cells with immunogen followed by a subsequent transition from restin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 1971-04, Vol.77 (2), p.265-275
Hauptverfasser: Lerner, R. A., Hodge, L. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 265
container_title Journal of cellular physiology
container_volume 77
creator Lerner, R. A.
Hodge, L. D.
description A concept has been suggested that the role of immunogen is to stimulate resting cells to enter a phase of the cell cycle in which the synthesis of immunoglobulin is obligatory. This process conceivably involves the initial union of cells with immunogen followed by a subsequent transition from resting to proliferating cell. Several aspects of an in vitro cellular transition have been investigated using cultured WIL2 lymphocytes which are shown to enter the G1 phase of the cell cycle upon release from rest. This transition is associated with phenotypic changes in the cells manifested by differences in density of individual cells and the amount and profile of polyribosomes. An increase in the rate of synthesis of total protein and specific immunoglobulin polypeptides accompanies the G0 to G1 transition. Agents useful in bacterial and other mammalian cell systems to probe translational versus transcriptional control mechanisms are active in these lymphocytes. This cellular model appears to offer unique opportunities to approach regulatory problems in cell biology because large numbers of synchronized cells are obtainable in which specific messenger‐RNAs and their corresponding polypeptides can be isolated in relatively pure form.
doi_str_mv 10.1002/jcp.1040770215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80957763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80957763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3785-a392ead42807d4f6e91d199f0e7147c9efd53a07b0e65efb0aa2fd3587498d8d3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRi0EKkvhyg0pJ25px3Ycx9zQCraUqiAK4mh54wnr4sTBTkTDr69XuyrixGk8nve9w0fISwpnFICd37ZjflQgJTAqHpEVBSXLqhbsMVllgJZKVPQpeZbSLQAoxfkJOakoMGBsRcIGByzwboyYkgtD4YYiLUO7i2Fwf9AWfunHXWiXCdOb4maarcNUZG7aYdGGYYrBF6HbZ_JPcmm_uL6fh_DDh-3ss28MfhlxnJzF9Jw86YxP-OI4T8m39---ri_Kq0-bD-u3V2XLZSNKwxVDYyvWgLRVV6OilirVAUpayVZhZwU3ILeAtcBuC8awznLRyEo1trH8lLw-eMcYfs2YJt271KL3ZsAwJ92AElLWPINnB7CNIaWInR6j601cNAW9b1jnhvXfhnPg1dE8b3u0D_ix0nxXh_tv53H5j01frj__4y4PWZcmvHvImvhT15JLob9fb7S4vvl4eaG-aOD3ErWZkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80957763</pqid></control><display><type>article</type><title>Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lerner, R. A. ; Hodge, L. D.</creator><creatorcontrib>Lerner, R. A. ; Hodge, L. D.</creatorcontrib><description>A concept has been suggested that the role of immunogen is to stimulate resting cells to enter a phase of the cell cycle in which the synthesis of immunoglobulin is obligatory. This process conceivably involves the initial union of cells with immunogen followed by a subsequent transition from resting to proliferating cell. Several aspects of an in vitro cellular transition have been investigated using cultured WIL2 lymphocytes which are shown to enter the G1 phase of the cell cycle upon release from rest. This transition is associated with phenotypic changes in the cells manifested by differences in density of individual cells and the amount and profile of polyribosomes. An increase in the rate of synthesis of total protein and specific immunoglobulin polypeptides accompanies the G0 to G1 transition. Agents useful in bacterial and other mammalian cell systems to probe translational versus transcriptional control mechanisms are active in these lymphocytes. This cellular model appears to offer unique opportunities to approach regulatory problems in cell biology because large numbers of synchronized cells are obtainable in which specific messenger‐RNAs and their corresponding polypeptides can be isolated in relatively pure form.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1040770215</identifier><identifier>PMID: 4102022</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Buffers ; Cell Count ; Cell Division ; Cell Line ; Culture Techniques ; Cyclic AMP - pharmacology ; Dactinomycin - pharmacology ; Diploidy ; DNA - biosynthesis ; Electrophoresis, Disc ; gamma-Globulins - biosynthesis ; Genes ; Humans ; Immunoglobulins - biosynthesis ; Indicators and Reagents ; Lymphocytes - metabolism ; Microscopy, Phase-Contrast ; Mitosis ; Peptide Biosynthesis ; Peptides - antagonists &amp; inhibitors ; Phenotype ; Protein Biosynthesis ; Proteins - analysis ; Proteins - antagonists &amp; inhibitors ; Ribosomes - metabolism ; Spleen ; Time Factors</subject><ispartof>Journal of cellular physiology, 1971-04, Vol.77 (2), p.265-275</ispartof><rights>Copyright © 1971 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3785-a392ead42807d4f6e91d199f0e7147c9efd53a07b0e65efb0aa2fd3587498d8d3</citedby><cites>FETCH-LOGICAL-c3785-a392ead42807d4f6e91d199f0e7147c9efd53a07b0e65efb0aa2fd3587498d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1040770215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1040770215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4102022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerner, R. A.</creatorcontrib><creatorcontrib>Hodge, L. D.</creatorcontrib><title>Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>A concept has been suggested that the role of immunogen is to stimulate resting cells to enter a phase of the cell cycle in which the synthesis of immunoglobulin is obligatory. This process conceivably involves the initial union of cells with immunogen followed by a subsequent transition from resting to proliferating cell. Several aspects of an in vitro cellular transition have been investigated using cultured WIL2 lymphocytes which are shown to enter the G1 phase of the cell cycle upon release from rest. This transition is associated with phenotypic changes in the cells manifested by differences in density of individual cells and the amount and profile of polyribosomes. An increase in the rate of synthesis of total protein and specific immunoglobulin polypeptides accompanies the G0 to G1 transition. Agents useful in bacterial and other mammalian cell systems to probe translational versus transcriptional control mechanisms are active in these lymphocytes. This cellular model appears to offer unique opportunities to approach regulatory problems in cell biology because large numbers of synchronized cells are obtainable in which specific messenger‐RNAs and their corresponding polypeptides can be isolated in relatively pure form.</description><subject>Buffers</subject><subject>Cell Count</subject><subject>Cell Division</subject><subject>Cell Line</subject><subject>Culture Techniques</subject><subject>Cyclic AMP - pharmacology</subject><subject>Dactinomycin - pharmacology</subject><subject>Diploidy</subject><subject>DNA - biosynthesis</subject><subject>Electrophoresis, Disc</subject><subject>gamma-Globulins - biosynthesis</subject><subject>Genes</subject><subject>Humans</subject><subject>Immunoglobulins - biosynthesis</subject><subject>Indicators and Reagents</subject><subject>Lymphocytes - metabolism</subject><subject>Microscopy, Phase-Contrast</subject><subject>Mitosis</subject><subject>Peptide Biosynthesis</subject><subject>Peptides - antagonists &amp; inhibitors</subject><subject>Phenotype</subject><subject>Protein Biosynthesis</subject><subject>Proteins - analysis</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>Ribosomes - metabolism</subject><subject>Spleen</subject><subject>Time Factors</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQRi0EKkvhyg0pJ25px3Ycx9zQCraUqiAK4mh54wnr4sTBTkTDr69XuyrixGk8nve9w0fISwpnFICd37ZjflQgJTAqHpEVBSXLqhbsMVllgJZKVPQpeZbSLQAoxfkJOakoMGBsRcIGByzwboyYkgtD4YYiLUO7i2Fwf9AWfunHXWiXCdOb4maarcNUZG7aYdGGYYrBF6HbZ_JPcmm_uL6fh_DDh-3ss28MfhlxnJzF9Jw86YxP-OI4T8m39---ri_Kq0-bD-u3V2XLZSNKwxVDYyvWgLRVV6OilirVAUpayVZhZwU3ILeAtcBuC8awznLRyEo1trH8lLw-eMcYfs2YJt271KL3ZsAwJ92AElLWPINnB7CNIaWInR6j601cNAW9b1jnhvXfhnPg1dE8b3u0D_ix0nxXh_tv53H5j01frj__4y4PWZcmvHvImvhT15JLob9fb7S4vvl4eaG-aOD3ErWZkA</recordid><startdate>197104</startdate><enddate>197104</enddate><creator>Lerner, R. A.</creator><creator>Hodge, L. D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>197104</creationdate><title>Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides</title><author>Lerner, R. A. ; Hodge, L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3785-a392ead42807d4f6e91d199f0e7147c9efd53a07b0e65efb0aa2fd3587498d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><topic>Buffers</topic><topic>Cell Count</topic><topic>Cell Division</topic><topic>Cell Line</topic><topic>Culture Techniques</topic><topic>Cyclic AMP - pharmacology</topic><topic>Dactinomycin - pharmacology</topic><topic>Diploidy</topic><topic>DNA - biosynthesis</topic><topic>Electrophoresis, Disc</topic><topic>gamma-Globulins - biosynthesis</topic><topic>Genes</topic><topic>Humans</topic><topic>Immunoglobulins - biosynthesis</topic><topic>Indicators and Reagents</topic><topic>Lymphocytes - metabolism</topic><topic>Microscopy, Phase-Contrast</topic><topic>Mitosis</topic><topic>Peptide Biosynthesis</topic><topic>Peptides - antagonists &amp; inhibitors</topic><topic>Phenotype</topic><topic>Protein Biosynthesis</topic><topic>Proteins - analysis</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>Ribosomes - metabolism</topic><topic>Spleen</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerner, R. A.</creatorcontrib><creatorcontrib>Hodge, L. D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerner, R. A.</au><au>Hodge, L. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>1971-04</date><risdate>1971</risdate><volume>77</volume><issue>2</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>A concept has been suggested that the role of immunogen is to stimulate resting cells to enter a phase of the cell cycle in which the synthesis of immunoglobulin is obligatory. This process conceivably involves the initial union of cells with immunogen followed by a subsequent transition from resting to proliferating cell. Several aspects of an in vitro cellular transition have been investigated using cultured WIL2 lymphocytes which are shown to enter the G1 phase of the cell cycle upon release from rest. This transition is associated with phenotypic changes in the cells manifested by differences in density of individual cells and the amount and profile of polyribosomes. An increase in the rate of synthesis of total protein and specific immunoglobulin polypeptides accompanies the G0 to G1 transition. Agents useful in bacterial and other mammalian cell systems to probe translational versus transcriptional control mechanisms are active in these lymphocytes. This cellular model appears to offer unique opportunities to approach regulatory problems in cell biology because large numbers of synchronized cells are obtainable in which specific messenger‐RNAs and their corresponding polypeptides can be isolated in relatively pure form.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>4102022</pmid><doi>10.1002/jcp.1040770215</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 1971-04, Vol.77 (2), p.265-275
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_80957763
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Buffers
Cell Count
Cell Division
Cell Line
Culture Techniques
Cyclic AMP - pharmacology
Dactinomycin - pharmacology
Diploidy
DNA - biosynthesis
Electrophoresis, Disc
gamma-Globulins - biosynthesis
Genes
Humans
Immunoglobulins - biosynthesis
Indicators and Reagents
Lymphocytes - metabolism
Microscopy, Phase-Contrast
Mitosis
Peptide Biosynthesis
Peptides - antagonists & inhibitors
Phenotype
Protein Biosynthesis
Proteins - analysis
Proteins - antagonists & inhibitors
Ribosomes - metabolism
Spleen
Time Factors
title Gene expression in synchronized lymphocytes: Studies on the control of synthesis of immunoglobulin polypeptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20in%20synchronized%20lymphocytes:%20Studies%20on%20the%20control%20of%20synthesis%20of%20immunoglobulin%20polypeptides&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Lerner,%20R.%20A.&rft.date=1971-04&rft.volume=77&rft.issue=2&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1040770215&rft_dat=%3Cproquest_cross%3E80957763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80957763&rft_id=info:pmid/4102022&rfr_iscdi=true