Detection of extracellular action potentials in noise for the control of microelectrode advancement
A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time differe...
Gespeichert in:
Veröffentlicht in: | Computer programs in biomedicine 1983-08, Vol.17 (1), p.3-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Computer programs in biomedicine |
container_volume | 17 |
creator | Scobey, Robert P |
description | A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes. |
doi_str_mv | 10.1016/0010-468X(83)90020-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80852268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010468X8390020X</els_id><sourcerecordid>80852268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxXNQVl39Bgo5iR6q06TNphdB_A-CF4W9hTSdYqRt1iS76Lc3tYtHT8O8mfeS-RFynMNFDrm4BMghK4Rcnkl-XgEwyJY7ZP9P3iMHIXwknQPIGZkJIStWiX1ibjGiidYN1LUUv6LXBrtu3WlP9aSvXMQhWt0Fagc6OBuQts7T-I7UuCF6143e3hrvsEth3jVIdbPRg8E-WQ_JbpvceLStc_J2f_d685g9vzw83Vw_Z4aXi5jVEkTBBMOyXmjBS40sh9TUvBYtAygqWS3qql20AqEom5rxkhWMN7oFbgrO5-R0yl1597nGEFVvw3iNHtCtg5IgS8aETIvFtJh-HILHVq287bX_VjmokacawakRnJJc_fJUy2Q72eav6x6bP9MWZppfTXNMR24sehWMxQShsT5hUY2z_z_wA80ViGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80852268</pqid></control><display><type>article</type><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Scobey, Robert P</creator><creatorcontrib>Scobey, Robert P</creatorcontrib><description>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</description><identifier>ISSN: 0010-468X</identifier><identifier>DOI: 10.1016/0010-468X(83)90020-X</identifier><identifier>PMID: 6689296</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action potential ; Action Potentials ; Animals ; Computers ; Humans ; Microelectrode ; Microelectrodes ; Multiple microelectrodes ; Neural signal, in noise ; Neurons - physiology ; Pattern Recognition, Automated ; Software ; Time Factors</subject><ispartof>Computer programs in biomedicine, 1983-08, Vol.17 (1), p.3-9</ispartof><rights>1983</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</citedby><cites>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6689296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scobey, Robert P</creatorcontrib><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><title>Computer programs in biomedicine</title><addtitle>Comput Programs Biomed</addtitle><description>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Computers</subject><subject>Humans</subject><subject>Microelectrode</subject><subject>Microelectrodes</subject><subject>Multiple microelectrodes</subject><subject>Neural signal, in noise</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated</subject><subject>Software</subject><subject>Time Factors</subject><issn>0010-468X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LxDAQxXNQVl39Bgo5iR6q06TNphdB_A-CF4W9hTSdYqRt1iS76Lc3tYtHT8O8mfeS-RFynMNFDrm4BMghK4Rcnkl-XgEwyJY7ZP9P3iMHIXwknQPIGZkJIStWiX1ibjGiidYN1LUUv6LXBrtu3WlP9aSvXMQhWt0Fagc6OBuQts7T-I7UuCF6143e3hrvsEth3jVIdbPRg8E-WQ_JbpvceLStc_J2f_d685g9vzw83Vw_Z4aXi5jVEkTBBMOyXmjBS40sh9TUvBYtAygqWS3qql20AqEom5rxkhWMN7oFbgrO5-R0yl1597nGEFVvw3iNHtCtg5IgS8aETIvFtJh-HILHVq287bX_VjmokacawakRnJJc_fJUy2Q72eav6x6bP9MWZppfTXNMR24sehWMxQShsT5hUY2z_z_wA80ViGw</recordid><startdate>198308</startdate><enddate>198308</enddate><creator>Scobey, Robert P</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198308</creationdate><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><author>Scobey, Robert P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Computers</topic><topic>Humans</topic><topic>Microelectrode</topic><topic>Microelectrodes</topic><topic>Multiple microelectrodes</topic><topic>Neural signal, in noise</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Scobey, Robert P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scobey, Robert P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of extracellular action potentials in noise for the control of microelectrode advancement</atitle><jtitle>Computer programs in biomedicine</jtitle><addtitle>Comput Programs Biomed</addtitle><date>1983-08</date><risdate>1983</risdate><volume>17</volume><issue>1</issue><spage>3</spage><epage>9</epage><pages>3-9</pages><issn>0010-468X</issn><abstract>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>6689296</pmid><doi>10.1016/0010-468X(83)90020-X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-468X |
ispartof | Computer programs in biomedicine, 1983-08, Vol.17 (1), p.3-9 |
issn | 0010-468X |
language | eng |
recordid | cdi_proquest_miscellaneous_80852268 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Action potential Action Potentials Animals Computers Humans Microelectrode Microelectrodes Multiple microelectrodes Neural signal, in noise Neurons - physiology Pattern Recognition, Automated Software Time Factors |
title | Detection of extracellular action potentials in noise for the control of microelectrode advancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20extracellular%20action%20potentials%20in%20noise%20for%20the%20control%20of%20microelectrode%20advancement&rft.jtitle=Computer%20programs%20in%20biomedicine&rft.au=Scobey,%20Robert%20P&rft.date=1983-08&rft.volume=17&rft.issue=1&rft.spage=3&rft.epage=9&rft.pages=3-9&rft.issn=0010-468X&rft_id=info:doi/10.1016/0010-468X(83)90020-X&rft_dat=%3Cproquest_cross%3E80852268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80852268&rft_id=info:pmid/6689296&rft_els_id=0010468X8390020X&rfr_iscdi=true |