Detection of extracellular action potentials in noise for the control of microelectrode advancement

A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer programs in biomedicine 1983-08, Vol.17 (1), p.3-9
1. Verfasser: Scobey, Robert P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 3
container_title Computer programs in biomedicine
container_volume 17
creator Scobey, Robert P
description A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.
doi_str_mv 10.1016/0010-468X(83)90020-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80852268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010468X8390020X</els_id><sourcerecordid>80852268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxXNQVl39Bgo5iR6q06TNphdB_A-CF4W9hTSdYqRt1iS76Lc3tYtHT8O8mfeS-RFynMNFDrm4BMghK4Rcnkl-XgEwyJY7ZP9P3iMHIXwknQPIGZkJIStWiX1ibjGiidYN1LUUv6LXBrtu3WlP9aSvXMQhWt0Fagc6OBuQts7T-I7UuCF6143e3hrvsEth3jVIdbPRg8E-WQ_JbpvceLStc_J2f_d685g9vzw83Vw_Z4aXi5jVEkTBBMOyXmjBS40sh9TUvBYtAygqWS3qql20AqEom5rxkhWMN7oFbgrO5-R0yl1597nGEFVvw3iNHtCtg5IgS8aETIvFtJh-HILHVq287bX_VjmokacawakRnJJc_fJUy2Q72eav6x6bP9MWZppfTXNMR24sehWMxQShsT5hUY2z_z_wA80ViGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80852268</pqid></control><display><type>article</type><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Scobey, Robert P</creator><creatorcontrib>Scobey, Robert P</creatorcontrib><description>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</description><identifier>ISSN: 0010-468X</identifier><identifier>DOI: 10.1016/0010-468X(83)90020-X</identifier><identifier>PMID: 6689296</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action potential ; Action Potentials ; Animals ; Computers ; Humans ; Microelectrode ; Microelectrodes ; Multiple microelectrodes ; Neural signal, in noise ; Neurons - physiology ; Pattern Recognition, Automated ; Software ; Time Factors</subject><ispartof>Computer programs in biomedicine, 1983-08, Vol.17 (1), p.3-9</ispartof><rights>1983</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</citedby><cites>FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6689296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scobey, Robert P</creatorcontrib><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><title>Computer programs in biomedicine</title><addtitle>Comput Programs Biomed</addtitle><description>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Computers</subject><subject>Humans</subject><subject>Microelectrode</subject><subject>Microelectrodes</subject><subject>Multiple microelectrodes</subject><subject>Neural signal, in noise</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated</subject><subject>Software</subject><subject>Time Factors</subject><issn>0010-468X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LxDAQxXNQVl39Bgo5iR6q06TNphdB_A-CF4W9hTSdYqRt1iS76Lc3tYtHT8O8mfeS-RFynMNFDrm4BMghK4Rcnkl-XgEwyJY7ZP9P3iMHIXwknQPIGZkJIStWiX1ibjGiidYN1LUUv6LXBrtu3WlP9aSvXMQhWt0Fagc6OBuQts7T-I7UuCF6143e3hrvsEth3jVIdbPRg8E-WQ_JbpvceLStc_J2f_d685g9vzw83Vw_Z4aXi5jVEkTBBMOyXmjBS40sh9TUvBYtAygqWS3qql20AqEom5rxkhWMN7oFbgrO5-R0yl1597nGEFVvw3iNHtCtg5IgS8aETIvFtJh-HILHVq287bX_VjmokacawakRnJJc_fJUy2Q72eav6x6bP9MWZppfTXNMR24sehWMxQShsT5hUY2z_z_wA80ViGw</recordid><startdate>198308</startdate><enddate>198308</enddate><creator>Scobey, Robert P</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198308</creationdate><title>Detection of extracellular action potentials in noise for the control of microelectrode advancement</title><author>Scobey, Robert P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b8064262e5b7a635ae210e5bb3b6f20049897b9f7f6e045db2352423daf03c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Computers</topic><topic>Humans</topic><topic>Microelectrode</topic><topic>Microelectrodes</topic><topic>Multiple microelectrodes</topic><topic>Neural signal, in noise</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Scobey, Robert P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scobey, Robert P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of extracellular action potentials in noise for the control of microelectrode advancement</atitle><jtitle>Computer programs in biomedicine</jtitle><addtitle>Comput Programs Biomed</addtitle><date>1983-08</date><risdate>1983</risdate><volume>17</volume><issue>1</issue><spage>3</spage><epage>9</epage><pages>3-9</pages><issn>0010-468X</issn><abstract>A digital computer was programmed to detect impulses in the presence of noise, rather than identify or classify impulse activity from microelectrodes. The analog signal was abstracted into a sequential series of voltage time vectors that measured peak-to-peak activity. The amplitude and time difference between a peak-positive potential and the next peak-negative potential defined one vector. The amplitude and time difference between that negative peak and the next positive peak defined the next vector, and so on. An algorithm determined if each successive vector was part of a signal pattern by comparing the properties of the vector to those in a stored list. The algorithm was designed for future application with minimum computer systems and multiple-tip microelectrodes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>6689296</pmid><doi>10.1016/0010-468X(83)90020-X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-468X
ispartof Computer programs in biomedicine, 1983-08, Vol.17 (1), p.3-9
issn 0010-468X
language eng
recordid cdi_proquest_miscellaneous_80852268
source MEDLINE; Alma/SFX Local Collection
subjects Action potential
Action Potentials
Animals
Computers
Humans
Microelectrode
Microelectrodes
Multiple microelectrodes
Neural signal, in noise
Neurons - physiology
Pattern Recognition, Automated
Software
Time Factors
title Detection of extracellular action potentials in noise for the control of microelectrode advancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20extracellular%20action%20potentials%20in%20noise%20for%20the%20control%20of%20microelectrode%20advancement&rft.jtitle=Computer%20programs%20in%20biomedicine&rft.au=Scobey,%20Robert%20P&rft.date=1983-08&rft.volume=17&rft.issue=1&rft.spage=3&rft.epage=9&rft.pages=3-9&rft.issn=0010-468X&rft_id=info:doi/10.1016/0010-468X(83)90020-X&rft_dat=%3Cproquest_cross%3E80852268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80852268&rft_id=info:pmid/6689296&rft_els_id=0010468X8390020X&rfr_iscdi=true