Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase
Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO4 2− concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enz...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2010-11, Vol.49 (45), p.9911-9921 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9921 |
---|---|
container_issue | 45 |
container_start_page | 9911 |
container_title | Biochemistry (Easton) |
container_volume | 49 |
creator | de Vries, Simon Momcilovic, Milica Strampraad, Marc J. F Whitelegge, Julian P Baghai, Ashkan Schröder, Imke |
description | Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO4 2− concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 μM WO4 2− contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO4 2− concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s−1) but the same K m value for nitrate (56 μM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E m for W(V/IV) of the purified W-Nar was estimated to be −8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o P type (E m = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell’s exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO4 2− environment. |
doi_str_mv | 10.1021/bi100974v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_808461129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>808461129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-2359afd964363c66f97023512fbafe29775f3b6c89d41fccac8166ff1375e7d53</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMotl4WvoBkI-JiNJlLZuKulGqFoiJ1PZzJJG3KTFKTTKFv75TWrlydC9_54PwI3VDySElMnypNCeF5ujlBQ5rFJEo5z07RkBDCopgzMkAX3q_6MSV5eo4GMSlYQlg6RHZUwzpA0NbgYDHgqV4so3lnFj5Igydmo501rTThGX9una1AdE3XYpDOrpd6146tCaCNx2DwSAS9kfh4_66DgyDxl6w7EcDLK3SmoPHy-lAv0ffLZD6eRrOP17fxaBZBUpAQxUnGQdWcpQlLBGOK56Tf0VhVoGTM8zxTScVEweuUKiFAFLSnFE3yTOZ1llyi-7137exPJ30oW-2FbBow0na-LEiRMkpj3pMPe1I4672Tqlw73YLblpSUu3jLY7w9e3uwdlUr6yP5l2cP3O0BEL5c2c6Z_sl_RL8kHoJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>808461129</pqid></control><display><type>article</type><title>Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase</title><source>MEDLINE</source><source>ACS Publications</source><creator>de Vries, Simon ; Momcilovic, Milica ; Strampraad, Marc J. F ; Whitelegge, Julian P ; Baghai, Ashkan ; Schröder, Imke</creator><creatorcontrib>de Vries, Simon ; Momcilovic, Milica ; Strampraad, Marc J. F ; Whitelegge, Julian P ; Baghai, Ashkan ; Schröder, Imke</creatorcontrib><description>Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO4 2− concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 μM WO4 2− contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO4 2− concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s−1) but the same K m value for nitrate (56 μM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E m for W(V/IV) of the purified W-Nar was estimated to be −8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o P type (E m = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell’s exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO4 2− environment.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi100974v</identifier><identifier>PMID: 20863064</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acclimatization ; Catalytic Domain ; Electron Spin Resonance Spectroscopy ; Environment ; Kinetics ; Mass Spectrometry ; Nitrate Reductase - isolation & purification ; Nitrate Reductase - metabolism ; Nitrite Reductases - isolation & purification ; Nitrite Reductases - metabolism ; Oxidation-Reduction ; Protein Subunits - isolation & purification ; Protein Subunits - metabolism ; Pyrobaculum - drug effects ; Pyrobaculum - enzymology ; Pyrobaculum - growth & development ; Tungsten - metabolism ; Tungsten - pharmacology</subject><ispartof>Biochemistry (Easton), 2010-11, Vol.49 (45), p.9911-9921</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-2359afd964363c66f97023512fbafe29775f3b6c89d41fccac8166ff1375e7d53</citedby><cites>FETCH-LOGICAL-a380t-2359afd964363c66f97023512fbafe29775f3b6c89d41fccac8166ff1375e7d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi100974v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi100974v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20863064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vries, Simon</creatorcontrib><creatorcontrib>Momcilovic, Milica</creatorcontrib><creatorcontrib>Strampraad, Marc J. F</creatorcontrib><creatorcontrib>Whitelegge, Julian P</creatorcontrib><creatorcontrib>Baghai, Ashkan</creatorcontrib><creatorcontrib>Schröder, Imke</creatorcontrib><title>Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO4 2− concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 μM WO4 2− contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO4 2− concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s−1) but the same K m value for nitrate (56 μM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E m for W(V/IV) of the purified W-Nar was estimated to be −8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o P type (E m = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell’s exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO4 2− environment.</description><subject>Acclimatization</subject><subject>Catalytic Domain</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Environment</subject><subject>Kinetics</subject><subject>Mass Spectrometry</subject><subject>Nitrate Reductase - isolation & purification</subject><subject>Nitrate Reductase - metabolism</subject><subject>Nitrite Reductases - isolation & purification</subject><subject>Nitrite Reductases - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Subunits - isolation & purification</subject><subject>Protein Subunits - metabolism</subject><subject>Pyrobaculum - drug effects</subject><subject>Pyrobaculum - enzymology</subject><subject>Pyrobaculum - growth & development</subject><subject>Tungsten - metabolism</subject><subject>Tungsten - pharmacology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtKAzEUhoMotl4WvoBkI-JiNJlLZuKulGqFoiJ1PZzJJG3KTFKTTKFv75TWrlydC9_54PwI3VDySElMnypNCeF5ujlBQ5rFJEo5z07RkBDCopgzMkAX3q_6MSV5eo4GMSlYQlg6RHZUwzpA0NbgYDHgqV4so3lnFj5Igydmo501rTThGX9una1AdE3XYpDOrpd6146tCaCNx2DwSAS9kfh4_66DgyDxl6w7EcDLK3SmoPHy-lAv0ffLZD6eRrOP17fxaBZBUpAQxUnGQdWcpQlLBGOK56Tf0VhVoGTM8zxTScVEweuUKiFAFLSnFE3yTOZ1llyi-7137exPJ30oW-2FbBow0na-LEiRMkpj3pMPe1I4672Tqlw73YLblpSUu3jLY7w9e3uwdlUr6yP5l2cP3O0BEL5c2c6Z_sl_RL8kHoJk</recordid><startdate>20101116</startdate><enddate>20101116</enddate><creator>de Vries, Simon</creator><creator>Momcilovic, Milica</creator><creator>Strampraad, Marc J. F</creator><creator>Whitelegge, Julian P</creator><creator>Baghai, Ashkan</creator><creator>Schröder, Imke</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101116</creationdate><title>Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase</title><author>de Vries, Simon ; Momcilovic, Milica ; Strampraad, Marc J. F ; Whitelegge, Julian P ; Baghai, Ashkan ; Schröder, Imke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-2359afd964363c66f97023512fbafe29775f3b6c89d41fccac8166ff1375e7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acclimatization</topic><topic>Catalytic Domain</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Environment</topic><topic>Kinetics</topic><topic>Mass Spectrometry</topic><topic>Nitrate Reductase - isolation & purification</topic><topic>Nitrate Reductase - metabolism</topic><topic>Nitrite Reductases - isolation & purification</topic><topic>Nitrite Reductases - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Subunits - isolation & purification</topic><topic>Protein Subunits - metabolism</topic><topic>Pyrobaculum - drug effects</topic><topic>Pyrobaculum - enzymology</topic><topic>Pyrobaculum - growth & development</topic><topic>Tungsten - metabolism</topic><topic>Tungsten - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Simon</creatorcontrib><creatorcontrib>Momcilovic, Milica</creatorcontrib><creatorcontrib>Strampraad, Marc J. F</creatorcontrib><creatorcontrib>Whitelegge, Julian P</creatorcontrib><creatorcontrib>Baghai, Ashkan</creatorcontrib><creatorcontrib>Schröder, Imke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Simon</au><au>Momcilovic, Milica</au><au>Strampraad, Marc J. F</au><au>Whitelegge, Julian P</au><au>Baghai, Ashkan</au><au>Schröder, Imke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2010-11-16</date><risdate>2010</risdate><volume>49</volume><issue>45</issue><spage>9911</spage><epage>9921</epage><pages>9911-9921</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO4 2− concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 μM WO4 2− contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO4 2− concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s−1) but the same K m value for nitrate (56 μM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E m for W(V/IV) of the purified W-Nar was estimated to be −8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o P type (E m = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell’s exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO4 2− environment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20863064</pmid><doi>10.1021/bi100974v</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2010-11, Vol.49 (45), p.9911-9921 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_808461129 |
source | MEDLINE; ACS Publications |
subjects | Acclimatization Catalytic Domain Electron Spin Resonance Spectroscopy Environment Kinetics Mass Spectrometry Nitrate Reductase - isolation & purification Nitrate Reductase - metabolism Nitrite Reductases - isolation & purification Nitrite Reductases - metabolism Oxidation-Reduction Protein Subunits - isolation & purification Protein Subunits - metabolism Pyrobaculum - drug effects Pyrobaculum - enzymology Pyrobaculum - growth & development Tungsten - metabolism Tungsten - pharmacology |
title | Adaptation to a High-Tungsten Environment: Pyrobaculum aerophilum Contains an Active Tungsten Nitrate Reductase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20to%20a%20High-Tungsten%20Environment:%20Pyrobaculum%20aerophilum%20Contains%20an%20Active%20Tungsten%20Nitrate%20Reductase&rft.jtitle=Biochemistry%20(Easton)&rft.au=de%20Vries,%20Simon&rft.date=2010-11-16&rft.volume=49&rft.issue=45&rft.spage=9911&rft.epage=9921&rft.pages=9911-9921&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi100974v&rft_dat=%3Cproquest_cross%3E808461129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=808461129&rft_id=info:pmid/20863064&rfr_iscdi=true |