Trypsinization of chick glial cells before seeding: effects on energy metabolism enzymes and glutamine synthetase

In order to test the possible involvement of surface proteins on some metabolical aspects of chick glial cell differentiation in culture, perturbations were induced on the glial cell surface membrane by limited trypsinization before seeding. The developmental changes of enzymes involved in the energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 1983-10, Vol.8 (10), p.1233-1243
Hauptverfasser: THOLEY, G, LEDIG, M, BLOCH, S, MANDEL, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to test the possible involvement of surface proteins on some metabolical aspects of chick glial cell differentiation in culture, perturbations were induced on the glial cell surface membrane by limited trypsinization before seeding. The developmental changes of enzymes involved in the energy metabolism of the cell: malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), hexokinase (HK), lactate dehydrogenase (LDH), enolase as well as glutamine synthetase (GS) were determined in trypsin treated cells and controls. The total protein and DNA content per dish was higher in treated cells than in controls, however the protein ratio towards DNA remained unchanged. The levels of GS, GDH, LDH, and enolase activities were significantly enhanced after trypsin treatment of the cells compared to controls. The enhanced value of total LDH activity is essentially the result of the increase of M subunit containing isoenzymes. Considering that a higher level of GS activity characterizes some maturation of the glial cells (as observed during the maturation of the chick brain) it is apparent that modifications of cell surface located factors, by trypsin treatment, induce differentiation phenomena at the functional state of the glial cells in culture. This may indicate that interactions located at the cell surface are involved in the modulation of key enzymes of the energy metabolism pathway.
ISSN:0364-3190
1573-6903
DOI:10.1007/BF00963994