Network motifs in the transcriptional regulation network of Escherichia coli

Little is known about the design principles 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2 , 11 , 12 , however, are generating unprecedented amounts of information about gene regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2002-05, Vol.31 (1), p.64-68
Hauptverfasser: Shen-Orr, Shai S., Milo, Ron, Mangan, Shmoolik, Alon, Uri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 64
container_title Nature genetics
container_volume 31
creator Shen-Orr, Shai S.
Milo, Ron
Mangan, Shmoolik
Alon, Uri
description Little is known about the design principles 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2 , 11 , 12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3 , 6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.
doi_str_mv 10.1038/ng881
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_807266500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183420992</galeid><sourcerecordid>A183420992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-75ae95314f4982c7b4dd221ee7b75eda129f7cc9949123e0ca7c0d72e8a2c8d73</originalsourceid><addsrcrecordid>eNqN0luL1DAUB_Aiintxv4IUxRUfuuakaS6Py7LqwuCCt9eQSU86WdtmTFrUb2_GGRhHRKUPbdLfOSF_TlGcAbkAUsuXYycl3CuOoWG8AgHyfv4mHCpGan5UnKR0RwgwRuTD4ghAcdHU8rhYvMXpa4ifyyFM3qXSj-W0wnKKZkw2-vXkw2j6MmI392azKMddQXDldbIrjN6uvClt6P2j4oEzfcKz3fu0-Pjq-sPVm2px-_rm6nJRWd7wqRKNQdXUwBxTklqxZG1LKSCKpWiwNUCVE9YqxRTQGok1wpJWUJSGWtmK-rR4vu27juHLjGnSg08W-96MGOakJRGU84aQLM__KgVwphRV_4QgWU6zrjN88hu8C3PMGSVNKeWsAc4zerpFnelR-9GFHKjddNSXIGtGST40q4s_qPy0OHgbRnQ-7x8UvDgoyGbCb1Nn5pT0zft3_29vPx3aZ1trY0gpotPr6AcTv2sgejNd-ud0Zfd4d_d5OWC7V7tx2jdam2RN7_IUWZ_2jm1ilL-knfKvscO4D_HwxB_ESd75</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222645166</pqid></control><display><type>article</type><title>Network motifs in the transcriptional regulation network of Escherichia coli</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Shen-Orr, Shai S. ; Milo, Ron ; Mangan, Shmoolik ; Alon, Uri</creator><creatorcontrib>Shen-Orr, Shai S. ; Milo, Ron ; Mangan, Shmoolik ; Alon, Uri</creatorcontrib><description>Little is known about the design principles 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2 , 11 , 12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3 , 6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng881</identifier><identifier>PMID: 11967538</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Algorithms ; Animal Genetics and Genomics ; Bacteriology ; Biological and medical sciences ; Biomedicine ; Biosynthesis ; Cancer Research ; Data collection ; Databases, Genetic ; Datasets ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Function ; Genes, Bacterial ; Genetic aspects ; Genetic regulation ; Genetic transcription ; Genetics ; Human Genetics ; letter ; Microbiology ; Models, Genetic ; Physiological aspects ; Regulon ; RNA polymerase ; Signal Transduction ; Transcription factors ; Transcription Factors - genetics ; Transcription, Genetic</subject><ispartof>Nature genetics, 2002-05, Vol.31 (1), p.64-68</ispartof><rights>Springer Nature America, Inc. 2002</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-75ae95314f4982c7b4dd221ee7b75eda129f7cc9949123e0ca7c0d72e8a2c8d73</citedby><cites>FETCH-LOGICAL-c656t-75ae95314f4982c7b4dd221ee7b75eda129f7cc9949123e0ca7c0d72e8a2c8d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng881$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng881$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14184189$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11967538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen-Orr, Shai S.</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Mangan, Shmoolik</creatorcontrib><creatorcontrib>Alon, Uri</creatorcontrib><title>Network motifs in the transcriptional regulation network of Escherichia coli</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Little is known about the design principles 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2 , 11 , 12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3 , 6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animal Genetics and Genomics</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>Cancer Research</subject><subject>Data collection</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Function</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic transcription</subject><subject>Genetics</subject><subject>Human Genetics</subject><subject>letter</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>Physiological aspects</subject><subject>Regulon</subject><subject>RNA polymerase</subject><subject>Signal Transduction</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0luL1DAUB_Aiintxv4IUxRUfuuakaS6Py7LqwuCCt9eQSU86WdtmTFrUb2_GGRhHRKUPbdLfOSF_TlGcAbkAUsuXYycl3CuOoWG8AgHyfv4mHCpGan5UnKR0RwgwRuTD4ghAcdHU8rhYvMXpa4ifyyFM3qXSj-W0wnKKZkw2-vXkw2j6MmI392azKMddQXDldbIrjN6uvClt6P2j4oEzfcKz3fu0-Pjq-sPVm2px-_rm6nJRWd7wqRKNQdXUwBxTklqxZG1LKSCKpWiwNUCVE9YqxRTQGok1wpJWUJSGWtmK-rR4vu27juHLjGnSg08W-96MGOakJRGU84aQLM__KgVwphRV_4QgWU6zrjN88hu8C3PMGSVNKeWsAc4zerpFnelR-9GFHKjddNSXIGtGST40q4s_qPy0OHgbRnQ-7x8UvDgoyGbCb1Nn5pT0zft3_29vPx3aZ1trY0gpotPr6AcTv2sgejNd-ud0Zfd4d_d5OWC7V7tx2jdam2RN7_IUWZ_2jm1ilL-knfKvscO4D_HwxB_ESd75</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Shen-Orr, Shai S.</creator><creator>Milo, Ron</creator><creator>Mangan, Shmoolik</creator><creator>Alon, Uri</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020501</creationdate><title>Network motifs in the transcriptional regulation network of Escherichia coli</title><author>Shen-Orr, Shai S. ; Milo, Ron ; Mangan, Shmoolik ; Alon, Uri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-75ae95314f4982c7b4dd221ee7b75eda129f7cc9949123e0ca7c0d72e8a2c8d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animal Genetics and Genomics</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>Cancer Research</topic><topic>Data collection</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Function</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic transcription</topic><topic>Genetics</topic><topic>Human Genetics</topic><topic>letter</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>Physiological aspects</topic><topic>Regulon</topic><topic>RNA polymerase</topic><topic>Signal Transduction</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen-Orr, Shai S.</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Mangan, Shmoolik</creatorcontrib><creatorcontrib>Alon, Uri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen-Orr, Shai S.</au><au>Milo, Ron</au><au>Mangan, Shmoolik</au><au>Alon, Uri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network motifs in the transcriptional regulation network of Escherichia coli</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2002-05-01</date><risdate>2002</risdate><volume>31</volume><issue>1</issue><spage>64</spage><epage>68</epage><pages>64-68</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Little is known about the design principles 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2 , 11 , 12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3 , 6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11967538</pmid><doi>10.1038/ng881</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2002-05, Vol.31 (1), p.64-68
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_807266500
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Agriculture
Algorithms
Animal Genetics and Genomics
Bacteriology
Biological and medical sciences
Biomedicine
Biosynthesis
Cancer Research
Data collection
Databases, Genetic
Datasets
E coli
Escherichia coli
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Bacterial
Gene Function
Genes, Bacterial
Genetic aspects
Genetic regulation
Genetic transcription
Genetics
Human Genetics
letter
Microbiology
Models, Genetic
Physiological aspects
Regulon
RNA polymerase
Signal Transduction
Transcription factors
Transcription Factors - genetics
Transcription, Genetic
title Network motifs in the transcriptional regulation network of Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20motifs%20in%20the%20transcriptional%20regulation%20network%20of%20Escherichia%20coli&rft.jtitle=Nature%20genetics&rft.au=Shen-Orr,%20Shai%20S.&rft.date=2002-05-01&rft.volume=31&rft.issue=1&rft.spage=64&rft.epage=68&rft.pages=64-68&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng881&rft_dat=%3Cgale_proqu%3EA183420992%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222645166&rft_id=info:pmid/11967538&rft_galeid=A183420992&rfr_iscdi=true